Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chim Acta ; 1111: 40-48, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32312395

ABSTRACT

In this work, 3D stereolithographic printing is proposed for the first time for the fabrication of fluidic devices aimed at in-situ covalent immobilization of polymer monolithic columns. Integration in advanced flow injection systems capitalized upon programmable flow was realized for fully automatic solid-phase extraction (SPE) and clean-up procedures as a 'front-end' to on-line liquid chromatography. The as-fabricated 3D-printed extraction column devices were designed to tolerate the pressure drop of forward-flow fluidic systems when handling large sample volumes as demonstrated by the determination of anti-microbial agents, plastic additives and monomers as models of emerging contaminants (4-hydroxybenzoic acid, methylparaben, phenylparaben, bisphenol A and triclosan). Decoration of the monolithic phase with gold nanoparticles (AuNPs) was proven most appropriate for the enrichment of phenolic-type target compounds. In particular, the absolute recoveries for the tested analytes ranged from 73 to 92% both in water and saliva samples. The 3D printed composite monolith showed remarkable analytical features in terms of loading capacity (2 mg g-1), breakthrough volume (10 mL), satisfactory batch-to-batch reproducibility (<9% RSD), and easy on-line coupling of the SPE device to HPLC systems. The fully automatic 3D-printed SPE-HPLC hyphenated system was also exploited for the on-line extraction, matrix clean-up and determination of triclosan in 200 µL of real saliva samples.


Subject(s)
Automation , Polymers/chemistry , Printing, Three-Dimensional , Saliva/chemistry , Solid Phase Extraction , Triclosan/analysis , Chromatography, High Pressure Liquid , Humans , Molecular Structure , Particle Size , Surface Properties
2.
Anal Biochem ; 596: 113640, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32092290

ABSTRACT

A simple, fast, sensitive and reproducible capillary zone electrophoresis (CZE) method with single drop microextraction (SDME) for determination of homocysteine thiolactone (HTL) in human urine has been developed and validated. The method is characterized by good precision, high accuracy, short analysis time and low consumption of reagents. The procedure consists only of few steps: urine sample centrifugation, dilution with phosphate buffer and methanol, chloroform addition onto the top of donor phase, on-line SDME in CE system, sample separation by CZE and ultraviolet detection of HTL at 240 nm. The background electrolyte was 0.1 M pH 4.75 phosphate buffer. Effective separation was achieved within 6.04 min under the separation voltage of 24 kV (~110 µA). The LOQ and LOD for HTL were 50 and 25 nM urine, respectively. The calibration curve in urine showed linearity in the range of 50-200 nM, with R2 0.9995. The intra- and inter-day precision and recovery were 4.0-14.5% (average 8.7% and 9.3%) and 92.7-115.5% (average 103.6% and 104.8%), respectively. The procedure was successfully applied to analysis of urine samples.


Subject(s)
Homocysteine/analogs & derivatives , Liquid Phase Microextraction , Chromatography, Gas , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , Healthy Volunteers , Homocysteine/urine , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL