Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.213
Filter
1.
Virol J ; 21(1): 245, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369233

ABSTRACT

BACKGROUND: Cervical squamous cell carcinoma (CSCC) is a prevalent gynecological malignancy worldwide. Current treatments for CSCC can impact fertility and cause long-term complications, underscoring the need for new therapeutic strategies. Oncolytic virotherapy has emerged as a promising option for cancer treatment. Previous research has demonstrated the oncolytic activity of the coxsackievirus B3 strain 2035 A (CVB3/2035A) against various tumor types. This study aims to evaluate the clinical viability of CVB3/2035A for CSCC treatment, focusing on its oncolytic effect in patient-derived CSCC organoids. METHODS: The oncolytic effects of CVB3/2035A were investigated using human CSCC cell lines in vitro and mouse xenograft models in vivo. Preliminary tests for tumor-selectivity were conducted on patient-derived CSCC tissue samples and compared to normal cervical tissues ex vivo. Three patient-derived CSCC organoid lines were developed and treated with CVB3/2035A alone and in combination with paclitaxel. Both cytotoxicity and virus replication were evaluated in vitro. RESULTS: CVB3/2035A exhibited significant cytotoxic effects in human CSCC cell lines and xenograft mouse models. The virus selectively induced oncolysis in patient-derived CSCC tissue samples while sparing normal cervical tissues ex vivo. In patient-derived CSCC organoids, which retained the immunohistological characteristics of the original tumors, CVB3/2035A also demonstrated significant cytotoxic effects and efficient replication, as evidenced by increased viral titers and presence of viral nucleic acids and proteins. Notably, the combination of CVB3/2035A and paclitaxel resulted in enhanced cytotoxicity and viral replication. CONCLUSIONS: CVB3/2035A showed oncolytic activity in CSCC cell lines, xenografts, and patient-derived tissue cultures and organoids. Furthermore, the virus exhibited synergistic anti-tumor effects with paclitaxel against CSCC. These results suggest CVB3/2035A could serve as an alternative or adjunct to current CSCC chemotherapy regimens.


Subject(s)
Carcinoma, Squamous Cell , Enterovirus B, Human , Oncolytic Virotherapy , Oncolytic Viruses , Organoids , Paclitaxel , Uterine Cervical Neoplasms , Xenograft Model Antitumor Assays , Humans , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/drug therapy , Animals , Female , Organoids/virology , Mice , Enterovirus B, Human/physiology , Enterovirus B, Human/drug effects , Oncolytic Virotherapy/methods , Carcinoma, Squamous Cell/virology , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/drug therapy , Oncolytic Viruses/physiology , Cell Line, Tumor , Virus Replication/drug effects
2.
Cell Rep Med ; : 101751, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39357524

ABSTRACT

Although oncolytic adenoviruses are widely studied for their direct oncolytic activity and immunomodulatory role in cancer immunotherapy, the immunosuppressive feedback loop induced by oncolytic adenoviruses remains to be studied. Here, we demonstrate that type V adenovirus (ADV) induces the polarization of tumor-associated macrophages (TAMs) to the M2 phenotype and increases the infiltration of regulatory T cells (Tregs) in the tumor microenvironment (TME). By selectively compensating for these deficiencies, thymosin alpha 1 (Tα1) reprograms "M2-like" TAMs toward an antitumoral phenotype, thereby reprogramming the TME into a state more beneficial for antitumor immunity. Moreover, ADVTα1 is constructed by harnessing the merits of all the components for the aforementioned combinatorial therapy. Both exogenously supplied and adenovirus-produced Tα1 orchestrate TAM reprogramming and enhance the antitumor efficacy of ADV via CD8+ T cells, showing promising prospects for clinical translation. Our findings provide inspiration for improving oncolytic adenovirus combination therapy and designing oncolytic engineered adenoviruses.

3.
Comput Biol Med ; 183: 109235, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369544

ABSTRACT

Oncolytic (cancer-killing) virus treatment is a promising new therapy for cancer, with many viruses currently being tested for their ability to eradicate tumors. One of the major stumbling blocks to the development of this treatment modality has been preventing spread of the virus to non-cancerous cells. Our recent ability to manipulate RNA and DNA now allows for the possibility of creating designer viruses specifically targeted to cancer cells, thereby significantly reducing unwanted side effects in patients. In this study, we use a partial differential equation model to determine the characteristics of a virus needed to contain spread of an oncolytic virus within a spherical tumor and prevent it from spreading to non-cancerous cells outside the tumor. We find that oncolytic viruses that have different infection rates or different cell death rates in cancer and non-cancerous cells can be made to stay within the tumor. We find that there is a minimum difference in infection rates or cell death rates that will contain the virus and that this threshold value depends on the growth rate of the cancer. Identification of these types of thresholds can help researchers develop safer strains of oncolytic viruses allowing further development of this promising treatment.

4.
ACS Synth Biol ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358309

ABSTRACT

Synthesizing viral genomes plays an important role in fundamental virology research and in the development of vaccines and antiviral drugs. Herpes simplex virus type 1 (HSV-1) is a large DNA virus widely used in oncolytic virotherapy. Although de novo synthesis of the HSV-1 genome has been previously reported, the synthetic procedure is still far from efficient, and the synthesized genome contains a vector sequence that may affect its replication and application. In the present study, we developed an efficient vector-free strategy for synthesis and rescue of synthetic HSV-1. In contrast to the conventional method of transfecting mammalian cells with a completely synthesized genome containing a vector, overlapping HSV-1 fragments synthesized by transformation-associated recombination (TAR) in yeast were linearized and cotransfected into mammalian cells to rescue the synthetic virus. Using this strategy, a synthetic virus, F-Syn, comprising the complete genome of the HSV-1 F strain, was generated. The growth curve and electron microscopy of F-Syn confirmed that its replication dynamics and morphogenesis are similar to those of the parental virus. In addition, by combining TAR with in vitro CRISPR/Cas9 editing, an oncolytic virus, F-Syn-O, with deleted viral genes ICP6, ICP34.5, and ICP47 was generated. The antitumor effect of F-Syn-O was tested in vitro. F-Syn-O established a successful infection and induced dose-dependent cytotoxic effects in various human tumor cell lines. These strategies will facilitate convenient and systemic manipulation of HSV-1 genomes and could be further applied to the design and construction of oncolytic herpesviruses.

5.
Neoplasia ; 57: 101056, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39276533

ABSTRACT

Single agent immune checkpoint inhibitors have been ineffective for patients with advanced stage and recurrent high grade serous ovarian cancer (HGSOC). Using pre-clinical models of HGSOC, we evaluated the anti-tumor and immune stimulatory effects of an oncolytic adenovirus, MEM-288. This conditionally replicative virus encodes a modified membrane stable CD40L and IFNß. We demonstrated this virus successfully infects HGSOC cell lines and primary human ascites samples in vitro. We evaluated the anti-tumor and immunostimulatory activity in vivo in immune competent mouse models. Intraperitoneal delivery of MEM-288 decreased ascites and solid tumor burden compared to controls, and treatment generated a systemic anti-tumor immune response. The tumor microenvironment had a higher proportion of anti-tumor macrophages and decreased markers of angiogenesis. MEM-288 is a promising immunotherapy agent in HGSOC, with further pre-clinical studies required to understand the mechanism of action in the peritoneal microenvironment and clinical activity in combination with other therapies.

6.
Cancer Immunol Immunother ; 73(11): 221, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235531

ABSTRACT

BACKGROUND: Neuroblastoma is the most common extracranial solid tumor in children and accounts for 15% of pediatric cancer related deaths. Targeting neuroblastoma with immunotherapies has proven challenging due to a paucity of immune cells in the tumor microenvironment and the release of immunosuppressive cytokines by neuroblastoma tumor cells. We hypothesized that combining an oncolytic Herpes Simplex Virus (oHSV) with natural killer (NK) cells might overcome these barriers and incite tumor cell death. METHODS: We utilized MYCN amplified and non-amplified neuroblastoma cell lines, the IL-12 expressing oHSV, M002, and the human NK cell line, NK-92 MI. We assessed the cytotoxicity of NK cells against neuroblastoma with and without M002 infection, the effects of M002 on NK cell priming, and the impact of M002 and priming on the migratory capacity and CD107a expression of NK cells. To test clinical applicability, we then investigated the effects of M002 and NK cells on neuroblastoma in vivo. RESULTS: NK cells were more attracted to neuroblastoma cells that were infected with M002. There was an increase in neuroblastoma cell death with the combination treatment of M002 and NK cells both in vitro and in vivo. Priming the NK cells enhanced their cytotoxicity, migratory capacity and CD107a expression. CONCLUSIONS: To the best of our knowledge, these investigations are the first to demonstrate the effects of an oncolytic virus combined with self-maintaining NK cells in neuroblastoma and the priming effect of neuroblastoma on NK cells. The current studies provide a deeper understanding of the relation between NK cells and neuroblastoma and these data suggest that oHSV increases NK cell cytotoxicity towards neuroblastoma.


Subject(s)
Killer Cells, Natural , Neuroblastoma , Oncolytic Virotherapy , Neuroblastoma/therapy , Neuroblastoma/immunology , Killer Cells, Natural/immunology , Humans , Oncolytic Virotherapy/methods , Animals , Mice , Cell Line, Tumor , Oncolytic Viruses/immunology , Cytotoxicity, Immunologic , Simplexvirus/immunology , Xenograft Model Antitumor Assays
7.
Front Immunol ; 15: 1433315, 2024.
Article in English | MEDLINE | ID: mdl-39238638

ABSTRACT

Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.


Subject(s)
Colorectal Neoplasms , Immune Checkpoint Inhibitors , Immunotherapy , Humans , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Animals , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology
8.
Ann Med Surg (Lond) ; 86(9): 5354-5360, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39239066

ABSTRACT

Gliomas, comprising nearly 80% of brain malignancies, present a formidable challenge with glioblastomas being the most aggressive subtype. Despite multidisciplinary care, including surgery and chemoradiotherapy, the prognosis remains grim, emphasizing the need for innovative treatment strategies. The blood-brain barrier complicates drug access, and the diverse histopathology hinders targeted therapies. Oncolytic herpes viruses (oHSVs), particularly HSV1716, G207, and rQNestin34.5v, show promise in glioma treatment by selectively replicating in tumor cells. Preclinical and clinical studies demonstrate the safety and efficacy of oHSVs, with T-Vec being FDA-approved. However, challenges like viral delivery limitations and antiviral responses persist. The combination of oHSVs and combining cyclophosphamide (CPA) addresses these challenges, demonstrating increased transgene expression and viral activity. The immunosuppressive properties of CPA, particularly in metronomic schedules, enhance oHSV efficacy, supporting the development of this combination for recurrent malignant gliomas. CPA with oHSVs enhances viral oncolysis and extends survival. CPA's immunomodulatory effects, suppressing regulatory T cells, improve oHSV efficiency. While obstacles remain, this synergistic approach offers hope for improved outcomes, necessitating further research and clinical validation.

9.
Cell Rep ; 43(10): 114756, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39325621

ABSTRACT

Upon infection with herpes simplex virus 1 (HSV-1), the virus deploys multiple strategies to evade the host's innate immune response. However, the mechanisms governing this phenomenon remain elusive. Here, we find that HSV-1 leads to a decrease in overall m6A levels by selectively reducing METTL14 protein during early infection in glioma cells. Specifically, the HSV-1-encoded immediate-early protein ICP0 interacts with METTL14 within ND10 bodies and serves as an E3 ubiquitin protein ligase, targeting and ubiquitinating METTL14 at the lysine 156 and 162 sites. Subsequently, METTL14 undergoes proteasomal degradation. Furthermore, METTL14 stabilizes ISG15 mRNA mediated by IGF2BP3 to promote antiviral effects. Notably, METTL14 suppression significantly enhances the anti-tumor effect of oncolytic HSV-1 (oHSV-1) in mice bearing glioma xenografts. Collectively, these findings establish that ICP0-guided m6A modification controls the antiviral immune response and suggest that targeting METTL14/ISG15 represents a potential strategy to enhance the oncolytic activity of oHSV-1 in glioma treatment.

10.
J Transl Med ; 22(1): 862, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334370

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults with the lowest survival rates five years post-diagnosis. Oncolytic viruses (OVs) selectively target and damage cancer cells, and for this reason they are being investigated as new therapeutic tools also against GBM. METHODS: An oncolytic herpes simplex virus type 1 (oHSV-1) with deletions in the γ34.5 neurovirulence gene and the US12 gene, expressing enhanced green fluorescent protein (EGFP-oHSV-1) as reporter gene was generated and tested for its capacity to infect and kill the murine GL261 glioblastoma (GBM) cell line. Syngeneic mice were orthotopically injected with GL261cells. Seven days post-implantation, EGFP-oHSV-1 was administered intratumorally. Twenty-one days after parental tumor challenge in the opposite brain hemisphere, mice were sacrified and their brains were analysed by immunohistochemistry to assess tumor presence and cell infiltrate. RESULTS: oHSV-1 replicates and induces cell death of GL261 cells in vitro. A single intracranial injection of EGFP-oHSV-1 in established GL261 tumors significantly prolongs survival in all treated mice compared to placebo treatment. Notably, 45% of treated mice became long-term survivors, and rejected GL261 cells upon rechallenge in the contralateral brain hemisphere, indicating an anamnestic antitumoral immune response. Post-mortem analysis revealed a profound modification of the tumor microenvironment with increased infiltration of CD4 + and CD8 + T lymphocytes, intertumoral vascular collapse and activation and redistribution of macrophage, microglia, and astroglia in the tumor area, with the formation of intense fibrotic tissue suggestive of complete rejection in long-term survivor mice. CONCLUSIONS: EGFP-oHSV1 demonstrates potent antitumoral activity in an immunocompetent GBM model as a monotherapy, resulting from direct cell killing combined with the stimulation of a protective adaptive immune response. These results open the way to possible application of our strategy in clinical setting.


Subject(s)
Adaptive Immunity , Glioblastoma , Herpesvirus 1, Human , Oncolytic Virotherapy , Animals , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Cell Line, Tumor , Oncolytic Virotherapy/methods , Genetic Vectors , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Oncolytic Viruses/genetics , Mice, Inbred C57BL , Green Fluorescent Proteins/metabolism , Mice , Humans
11.
Cancers (Basel) ; 16(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39335111

ABSTRACT

Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.

12.
Genes (Basel) ; 15(9)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39336785

ABSTRACT

Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.


Subject(s)
Microtubules , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Virotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Oncolytic Viruses/genetics , Animals , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Immunotherapy/methods , Combined Modality Therapy
13.
Virol Sin ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299564

ABSTRACT

Oncolytic virus (OV) is increasingly being recognized as a novel vector in cancer immunotherapy. Increasing evidence suggests that OV has the ability to change the immune status of tumor microenvironment, so called transformation of 'cold' tumors into 'hot' tumors. The improved anti-tumor immunity can be induced by OV and further enhanced through the combination of various immunomodulators. The Neo-2/15 is a newly de novo synthesized cytokine that functions as both IL-2 and IL-15. However, it specifically lacks the binding site of IL-2 receptor α subunit (CD25), therefore unable to induce the Treg proliferation. In present study, a recombinant vesicular stomatitis virus expressing the Neo-2/15 (VSVM51R-Neo-2/15) was generated. Intratumoral delivery of VSVM51R-Neo-2/15 efficiently inhibited tumor growth in mice without causing the IL-2-related toxicity previously observed in clinic. Moreover, treatment with VSVM51R-Neo-2/15 increased the number of activated CD8+ T cells but not Treg cells in tumors. More tumor-bearing mice were survival with VSVM51R-Neo-2/15 treatment, and the surviving mice displayed enhanced protection against tumor cell rechallenge due to the induced anti-tumor immunity. In addition, combination therapy of OV and anti-PD-L1 immune checkpoint inhibitors further enhanced the anti-tumor immune response. These findings suggest that our novel VSVM51R-Neo-2/15 can effectively inhibit the tumor growth and enhance the sensitivity to immune checkpoint inhibitors, providing promising attempts for further clinical trials.

14.
Hereditas ; 161(1): 36, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342391

ABSTRACT

BACKGROUND: The therapeutic potential of oncolytic measles virotherapy has been demonstrated across various malignancies. However, the effectiveness against human breast cancer (BC) and the underlying mechanisms of the recombinant measles virus vaccine strain Hu191 (rMeV-Hu191) remain unclear. METHODS: We utilized a range of methods, including cell viability assay, Western blot, flow cytometry, immunofluorescence, SA-ß-gal staining, reverse transcription quantitative real-time PCR, transcriptome sequencing, BC xenograft mouse models, and immunohistochemistry to evaluate the antitumor efficacy of rMeV-Hu191 against BC and elucidate the underlying mechanism. Additionally, we employed transcriptomics and gene set enrichment analysis to analyze the lipid metabolism status of BC cells following rMeV-Hu191 infection. RESULTS: Our study revealed the multifaceted antitumor effects of rMeV-Hu191 against BC. rMeV-Hu191 induced apoptosis, inhibited proliferation, and promoted senescence in BC cells. Furthermore, rMeV-Hu191 was associated with changes in oxidative stress and lipid homeostasis in infected BC cells. In vivo, studies using a BC xenograft mouse model confirmed a significant reduction in tumor growth following local injection of rMeV-Hu191. CONCLUSIONS: The findings highlight the potential of rMeV-Hu191 as a promising treatment for BC and provide valuable insights into the mechanisms underlying its oncolytic effect.


Subject(s)
Breast Neoplasms , Measles virus , Oncolytic Virotherapy , Animals , Breast Neoplasms/therapy , Breast Neoplasms/genetics , Humans , Mice , Female , Oncolytic Virotherapy/methods , Cell Line, Tumor , Measles virus/genetics , Xenograft Model Antitumor Assays , Apoptosis , Cell Proliferation , Measles Vaccine , Oncolytic Viruses/genetics , Cell Survival
15.
Pharmaceutics ; 16(9)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39339217

ABSTRACT

The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.

16.
J Neurooncol ; 170(1): 31-40, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39222190

ABSTRACT

Endovascular surgical neuro-oncology is a relatively new subspecialty which uses endovascular neuro-interventional techniques for the management of nervous system tumors and tumor-related vascular conditions. Although there are several endovascular procedures that are widely available as standard-of-care diagnostic and treatment adjuncts, there has been a renewed interest to explore endovascular approaches as a means for selective intra-arterial delivery of therapeutic agents to nervous system tumors, including methods for opening the blood brain and blood tumor barriers. In this review, we discuss the historical development of various forms of endovascular intra-arterial treatment for tumors over the past 40 years, summarize endovascular approaches that are currently being employed, and highlight current clinical trials.


Subject(s)
Brain Neoplasms , Endovascular Procedures , Humans , Endovascular Procedures/methods , Brain Neoplasms/surgery , Surgical Oncology/methods
17.
Vaccines (Basel) ; 12(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39340040

ABSTRACT

Over the past decade, oncolytic viruses (OVs) have been developed as a promising treatment alone or in combination in immuno-oncology but have faced challenges in late-stage clinical trials. Our retrospective reanalysis of vaccinia oncolytic virus (VOV) clinical trials indicates that lower doses-rather than the maximum tolerated dose (MTD)-are associated with better tumor response rates. Patients who responded well to lower doses generally had prolonged survival rates in the early phase clinical trial. The association between poor outcomes and an increase in OV-induced neutrophils (OV-N) but not baseline neutrophil counts suggests the need for a comprehensive characterization of OV-N. Although this reanalysis is limited by patient heterogeneity-including differences in cancer type and stage, treatment schedules, and administration routes-it remains informative given the complexities of translational studies in the tumor-bearing mouse models of vaccinia oncolytic viruses. Notably, while OV-N increases with higher viral doses, the immune state shaped by tumor progression likely amplifies this tendency. These findings highlight the importance of OV-N immune modulation as well as dose optimization for the successful clinical development of VOV.

18.
Mol Ther Oncol ; 32(3): 200863, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39290319

ABSTRACT

Oncolytic viruses often face challenges in achieving optimal antitumor immunity as standalone therapies. The penton base RGD-integrin interactions play a significant role in wild-type adenovirus-induced innate immune responses. To modify these responses, we present ISC301, a novel oncolytic adenovirus engineered by deleting the natural RGD motifs in the penton base while incorporating artificial RGD motifs in the fiber knobs. ISC301 demonstrated comparable in vitro infectivity, cytotoxic effects, and signaling profiles across various cell types to its parental ICOVIR-5, which retains the penton base RGD motif. In immunodeficient and immunocompetent mouse models, ISC301 exhibited similar in vivo antitumor efficacy to ICOVIR-5. However, ISC301 induced higher intratumoral inflammation through NF-κB activation, leading to increased levels of tumor-infiltrating leukocytes and higher proportion of cytotoxic CD8+ T cells. In addition, ISC301 elicits a heightened pro-inflammatory response in peripheral blood. Importantly, when combined with CAR T cell therapy, ISC301 exhibited superior antitumor efficacy, surpassing monotherapy outcomes. These findings emphasize the impact of adenoviral modifications on antitumor immune responses. The deletion of penton base RGD motifs enhances ISC301's pro-inflammatory profile and boosts CAR T cell therapy efficacy. This study enhances understanding of oncolytic virus engineering strategies, positioning ISC301 as a promising candidate for combined immunotherapeutic approaches in cancer treatment.

19.
J Control Release ; 374: 89-102, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122217

ABSTRACT

Small extracellular vesicles (SEV) have attracted much attention both as mediators of intercellular communication and as drug delivery systems. In addition, recent studies have shown that SEV containing virus components and virus particles are released from virus-infected cells. Oncolytic viruses, which efficiently kill tumor cells by tumor cell-specific replication, have been actively studied as novel anticancer agents in clinical and preclinical studies. However, it remains to be fully elucidated whether SEV released from oncolytic virus-infected cells are involved in the antitumor effects of oncolytic viruses. In this study, we examined the tumor cell killing efficiencies and innate immune responses following treatment with SEV released from oncolytic reovirus-infected tumor cells in vitro and in vivo. Reovirus-infected B16 cells secreted SEV associated with or containing reovirus particles (Reo-SEV) with a diameter of approximately 130 nm and a zeta potential of -17 mV, although death of reovirus-infected B16 cells was not observed. The secreted Reo-SEV also contained interferon (IFN)-ß, tumor antigens, and damage-associated molecular patterns (DAMPs), including heat shock proteins (HSPs). Reo-SEV were secreted from the tumor tissues of reovirus-injected mice. Inhibition of the SEV secretion pathway using GW4869, which is a neutral sphingomyelinase inhibitor, resulted in significant reduction in the infectious titers of reovirus in the culture supernatants, suggesting that the cells released progeny virus via the SEV secretion pathway. Reo-SEV more efficiently killed mouse tumor cells and induced innate immune responses in mouse bone marrow-derived dendritic cells than reovirus. Reovirus and Reo-SEV mediated efficient and comparable levels of growth suppression of B16 subcutaneous tumors and induction of tumor infiltration of CD8+ T cells following intravenous administration. These results indicate that Reo-SEV are a promising oncolytic agent and that SEV are an effective delivery vehicle for oncolytic virus.


Subject(s)
Antigens, Neoplasm , Extracellular Vesicles , Interferon-beta , Mice, Inbred C57BL , Reoviridae , Animals , Cell Line, Tumor , Antigens, Neoplasm/immunology , Mice , Oncolytic Virotherapy/methods , Oncolytic Viruses , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Aniline Compounds/pharmacology , Aniline Compounds/administration & dosage , Immunity, Innate , Female , Benzylidene Compounds/pharmacology , Humans
20.
Math Biosci ; 376: 109275, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127095

ABSTRACT

We model interactions between cancer cells and viruses during oncolytic viral therapy. One of our primary goals is to identify parameter regions that yield treatment failure or success. We show that the tumor size under therapy at a particular time is less than the size without therapy. Our analysis demonstrates two thresholds for the horizontal transmission rate: a "failure threshold" below which treatment fails, and a "success threshold" above which infection prevalence reaches 100% and the tumor shrinks to its smallest size. Moreover, we explain how changes in the virulence of the virus alter the success threshold and the minimum tumor size. Our study suggests that the optimal virulence of an oncolytic virus depends on the timescale of virus dynamics. We identify a threshold for the virulence of the virus and show how this threshold depends on the timescale of virus dynamics. Our results suggest that when the timescale of virus dynamics is fast, administering a more virulent virus leads to a greater reduction in the tumor size. Conversely, when the viral timescale is slow, higher virulence can induce oscillations with high amplitude in the tumor size. Furthermore, we introduce the concept of a "Hopf bifurcation Island" in the parameter space, an idea that has applications far beyond the results of this paper and is applicable to many mathematical models. We elucidate what a Hopf bifurcation Island is, and we prove that small Islands can imply very slowly growing oscillatory solutions.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Oncolytic Virotherapy/methods , Humans , Neoplasms/therapy , Neoplasms/virology , Oncolytic Viruses/physiology , Models, Biological , Virulence , Mathematical Concepts
SELECTION OF CITATIONS
SEARCH DETAIL