Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Publication year range
1.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649200

ABSTRACT

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Subject(s)
Acupuncture Therapy , Arthritis, Experimental , Chemokine CXCL1 , Receptors, Interleukin-8B , Somatosensory Cortex , Animals , Humans , Male , Mice , Rats , Acupuncture Points , Arthritis, Experimental/therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Inflammation/therapy , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred BALB C , Pain/metabolism , Pain/genetics , Pain Management , Rats, Wistar , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Signal Transduction , Somatosensory Cortex/metabolism
2.
Metab Brain Dis ; 36(8): 2243-2253, 2021 12.
Article in English | MEDLINE | ID: mdl-34529220

ABSTRACT

Nociceptin opioid peptide (NOP) receptor modulates pain transmission and is considered a prospective target for pain management. Under acute pain conditions in rodents, however, no definitive conclusions about effects of systemically intervening NOP receptors on nociception, classical opioid-induced antinociception, tolerance and physical dependence have been drawn. Given that opioid analgesia has sex differences, and females experience greater pain and consume more opioids, clarifying these issues in females will help develop novel analgesics. To clarify the role of NOP receptors on the pharmacological profiles of µ-opioid receptor agonists, in this study, a selective agonist (SCH221510) and antagonist (SB612111) of the NOP receptor were subcutaneously administered in female mice in multiple animal models. In hot-plate test, neither SCH221510 (3 and 10 mg/kg, sc) nor SB612111 (10 mg/kg, sc) produced significant antinociception. SCH221510 (3 mg/kg, sc) attenuated but SB612111 (10 mg/kg, sc) enhanced morphine-induced antinociception, with rightward and leftward shift of morphine dose-response curves, respectively. SCH221510 (3 mg/kg, sc) combined with morphine (10 mg/kg, sc) accelerated the development of morphine antinociceptive tolerance. Conversely, SB612111 (10 mg/kg, sc) delayed morphine tolerance development. Neither SCH221510 (3 mg/kg, sc) nor SB612111 (10 mg/kg, sc) statistically significantly altered the development of morphine-induced physical dependence. Therefore, systemic activation of NOP receptors attenuated morphine antinociception to acute thermal stimuli, facilitated morphine-induced antinociceptive tolerance but did not robustly alter physical dependence in female mice. Systemic blockade of NOP receptors produced opposite actions. These findings demonstrate that N/OFQ-NOP receptor system plays diverse roles in modulating pharmacological profiles of µ-opioid receptor agonists.


Subject(s)
Analgesics, Opioid , Morphine , Analgesics, Opioid/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Mice , Morphine/pharmacology , Opioid Peptides/pharmacology , Prospective Studies , Receptors, Opioid/agonists , Nociceptin
3.
Eur J Pharmacol ; 844: 175-182, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30552903

ABSTRACT

Mu-opioid receptor agonists are clinically effective analgesics, but also produce undesirable effects that limit their clinical utility. The nociceptin opioid peptide (NOP) receptor system also modulates nociception, and NOP agonists might be useful adjuncts to enhance the analgesic effects or attenuate the undesirable effects of mu-opioid agonists. The present study determined behavioral interactions between the NOP agonist (-)-Ro 64-6198 and mu-opioid ligands that vary in mu-opioid receptor efficacy (17-cyclopropylmethyl-3,14ß-dihyroxy-4,5α-epoxy-6α-[(3 ́-isoquinolyl)acetamindo]morphinan (NAQ) < buprenorphine < nalbuphine < morphine = oxycodone < methadone) in male rhesus monkeys. For comparison, Ro 64-6198 interactions were also examined with the kappa-opioid receptor agonist nalfurafine. Each opioid ligand was examined alone and following fixed-dose Ro 64-6198 pretreatments in assays of thermal nociception (n = 3-4) and schedule-controlled responding (n = 3). Ro 64-6198 alone failed to produce significant antinociception up to doses (0.32 mg/kg, IM) that significantly decreased rates of responding. All opioid ligands, except NAQ and nalfurafine, produced dose- and thermal intensity-dependent antinociception. Ro 64-6198 enhanced the antinociceptive potency of buprenorphine, nalbuphine, methadone, and nalfurafine. Ro 64-6198 enhancement of nalbuphine antinociception was NOP antagonist SB-612111 reversible and occurred under a narrow range of dose and time conditions. All opioid ligands, except NAQ and buprenorphine, produced dose-dependent decreases in rates of responding. Ro 64-6198 did not significantly alter mu-opioid ligand rate-decreasing effects. Although these results suggest that NOP agonists may selectively enhance the antinociceptive vs. rate-suppressant effects of some mu-opioid agonists, this small enhancement occurred under a narrow range of conditions dampening enthusiasm for NOP agonists as candidate "opioid-sparing" adjuncts.


Subject(s)
Analgesics, Opioid/therapeutic use , Imidazoles/therapeutic use , Opioid Peptides/therapeutic use , Pain/drug therapy , Receptors, Opioid/agonists , Spiro Compounds/therapeutic use , Animals , Macaca mulatta , Male
4.
Eur J Pharmacol ; 832: 90-95, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-29753041

ABSTRACT

Cebranopadol is a novel, first-in-class analgesic with agonist activity at the nociceptin/orphanin FQ opioid peptide (NOP) receptor as well as the classical opioid peptide receptors. This study investigated the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Selective antagonists were used to probe the involvement of the NOP receptor and the µ-opioid peptide (MOP) receptors. Experimental mono-arthritis was induced by intra-articular injection of complete Freund's adjuvant into the left hind knee joint. Intravenous (i.v.) administration of cebranopadol 0.8-8.0 µg/kg to rats 5 days after induction of arthritis elicited dose-dependent increases in weight bearing on the affected limb. The quarter-maximal effective dose (ED25) for this anti-hypersensitive effect of cebranopadol was 1.6 µg/kg i.v. (95% confidence interval [CI]: 0.8, 1.6). The ED25 increased to 3.2 µg/kg i.v. (95% CI: 2.4, 4.0) following pretreatment with the selective NOP receptor antagonist J-113397 and to 18.3 µg/kg i.v. (95% CI: 9.6, 146.0) following pretreatment with the MOP receptor antagonist naloxone (at intraperitoneal antagonist doses of 4.64 mg/kg and 1.0 mg/kg, respectively). The MOP receptor agonist morphine and the NOP receptor agonist Ro65-6570 also elicited increases in weight bearing on the affected limb. The anti-hypersensitive effect of morphine 2.15 mg/kg i.v. was inhibited by naloxone but not by J-113397. Conversely, the anti-hypersensitive effect of Ro65-6570 0.464 mg/kg i.v. was inhibited by J-113397 but not by naloxone. In conclusion, cebranopadol evoked potent anti-hypersensitive efficacy in a rat model of arthritic pain, and this involved agonist activity at both the NOP and MOP receptors.


Subject(s)
Arthritis/complications , Indoles/pharmacology , Pain/drug therapy , Pain/metabolism , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Spiro Compounds/pharmacology , Animals , Dose-Response Relationship, Drug , Imidazoles/pharmacology , Indoles/therapeutic use , Male , Morphine/pharmacology , Pain/complications , Rats , Rats, Sprague-Dawley , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, mu/antagonists & inhibitors , Spiro Compounds/therapeutic use
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-614469

ABSTRACT

Pain is not only a common syndrome in clinic,but also a disease harming people′s health and quality of life. Dis?covery of potent and low-or non-addictive analgesic agent is a great challenge and our expectation. Nociceptin/orphanin FQ opioid pep?tide (NOP)receptor,the fourth member of the opioid receptor family,was discovered in 1994. Growing evidence has revealed that NOP receptor plays an important role in pain transduction and modulation and becomes a potential target for novel analgesics develop?ment. This review focuses on the progresses in exploring the biological characteristics of NOP receptor and its complex role in pain modulation,as well as the discovery of novel analgesic agents targeting NOP receptor,which provides reference for understanding the mechanisms of pain and analgesia and finding ideal analgesics.

6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-845359

ABSTRACT

Pain is not only a common syndrome in clinic, but also a disease harming people’s health and quality of life. Discovery of potent and low-or non-addictive analgesic agent is a great challenge and our expectation. Nociceptin/orphanin FQ opioid peptide (NOP)receptor, the fourth member of the opioid receptor family, was discovered in 1994. Growing evidence has revealed that NOP receptor plays an important role in pain transduction and modulation and becomes a potential target for novel analgesics development. This review focuses on the progresses in exploring the biological characteristics of NOP receptor and its complex role in pain modulation, as well as the discovery of novel analgesic agents targeting NOP receptor, which provides reference for understanding the mechanisms of pain and analgesia and finding ideal analgesics.

7.
Proc Natl Acad Sci U S A ; 113(37): E5511-8, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27573832

ABSTRACT

Despite the critical need, no previous research has substantiated safe opioid analgesics without abuse liability in primates. Recent advances in medicinal chemistry have led to the development of ligands with mixed mu opioid peptide (MOP)/nociceptin-orphanin FQ peptide (NOP) receptor agonist activity to achieve this objective. BU08028 is a novel orvinol analog that displays a similar binding profile to buprenorphine with improved affinity and efficacy at NOP receptors. The aim of this preclinical study was to establish the functional profile of BU08028 in monkeys using clinically used MOP receptor agonists for side-by-side comparisons in various well-honed behavioral and physiological assays. Systemic BU08028 (0.001-0.01 mg/kg) produced potent long-lasting (i.e., >24 h) antinociceptive and antiallodynic effects, which were blocked by MOP or NOP receptor antagonists. More importantly, the reinforcing strength of BU08028 was significantly lower than that of cocaine, remifentanil, or buprenorphine in monkeys responding under a progressive-ratio schedule of drug self-administration. Unlike MOP receptor agonists, BU08028 at antinociceptive doses and ∼10- to 30-fold higher doses did not cause respiratory depression or cardiovascular adverse events as measured by telemetry devices. After repeated administration, the monkeys developed acute physical dependence on morphine, as manifested by precipitated withdrawal signs, such as increased respiratory rate, heart rate, and blood pressure. In contrast, monkeys did not show physical dependence on BU08028. These in vivo findings in primates not only document the efficacy and tolerability profile of bifunctional MOP/NOP receptor agonists, but also provide a means of translating such ligands into therapies as safe and potentially abuse-free opioid analgesics.


Subject(s)
Analgesics, Opioid/administration & dosage , Buprenorphine/analogs & derivatives , Cocaine/toxicity , Pain/drug therapy , Analgesics, Opioid/adverse effects , Analgesics, Opioid/agonists , Analgesics, Opioid/antagonists & inhibitors , Animals , Buprenorphine/administration & dosage , Buprenorphine/adverse effects , Buprenorphine/chemistry , Buprenorphine/metabolism , Drug-Related Side Effects and Adverse Reactions/pathology , Humans , Ligands , Opioid Peptides/agonists , Opioid Peptides/antagonists & inhibitors , Pain/pathology , Primates , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/pathology
8.
ACS Chem Neurosci ; 6(12): 1956-64, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26367173

ABSTRACT

The nociceptin/orphanin FQ opioid peptide (NOP) receptor is a widely expressed GPCR involved in the modulation of pain, anxiety, and motor behaviors. Dissecting the functional properties of this receptor is limited by the lack of systemically active ligands that are brain permeant. The small molecule NOP receptor-selective, full agonist 8-[(1S,3aS)-2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one (Ro 64-6198) hydrochloride is an active, brain penetrant ligand, but its difficult and cost-prohibitive synthesis limits its widespread use and availability for animal studies. Here, we detail a more efficient and convenient method of synthesis, and use both in vitro and in vivo pharmacological assays to fully characterize this ligand. Specifically, we characterize the pharmacodynamics of Ro 64-6198 in cAMP and G-protein coupling in vitro and examine, for the first time, the effects of nociceptin/orphanin FQ and Ro 64-6198 in arrestin recruitment assays. Further, we examine the effects of Ro 64-6198 on analgesia, anxiety, and locomotor responses in vivo. This new synthesis and pharmacological characterization provide additional insights into the useful, systemically active, NOP receptor agonist Ro 64-6198.


Subject(s)
Imidazoles/chemistry , Imidazoles/pharmacology , Receptors, Opioid/agonists , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Animals , CHO Cells , Calcium/metabolism , Cricetulus , Cyclic AMP/metabolism , Energy Transfer , Exploratory Behavior/drug effects , HEK293 Cells , Humans , Mice , Models, Chemical , Pain Measurement/drug effects , Receptors, Opioid/chemistry , Receptors, Opioid/genetics , Rotarod Performance Test , Nociceptin Receptor
9.
Pharmacol Ther ; 141(3): 283-99, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24189487

ABSTRACT

Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995. The generation of specific agonists, antagonists and receptor deficient mice and rats has enabled progress in elucidating the biological functions of N/OFQ. Additionally, radio-imaging technologies have been advanced for investigation of this system in animals and humans. Together with traditional neurobehavioral techniques, these tools have been utilized to identify the biological significance of the N/OFQ system and its interacting partners. The present review focuses on the role of N/OFQ in the regulation of feeding, body weight homeostasis, stress, the stress-related psychiatric disorders of depression and anxiety, and in drug and alcohol dependence. Critical evaluation of the current scientific preclinical literature suggests that small molecule modulators of nociceptin opioid peptide receptors (NOP) might be useful in the treatment of diseases related to these biological functions. In particular, the literature data suggest that antagonism of NOP receptors will produce anti-obesity and antidepressant activities in humans. However, there are also contradictory data discussed. The current literature on the role of N/OFQ in anxiety and addiction, on the other hand points primarily to a role of agonist modulation being potentially therapeutic. Some drug-like molecules that function either as agonists or antagonists of NOP receptors have been optimized for human clinical study to test some of these hypotheses. The discovery of PET ligands for NOP receptors, combined with the pharmacological tools and burgeoning preclinical data set discussed here bodes well for a rapid advancement of clinical understanding and potential therapeutic benefit.


Subject(s)
Drug Design , Opioid Peptides/metabolism , Receptors, Opioid/metabolism , Animals , Anxiety/drug therapy , Anxiety/physiopathology , Humans , Mice , Mood Disorders/drug therapy , Mood Disorders/physiopathology , Narcotic Antagonists , Obesity/drug therapy , Obesity/physiopathology , Rats , Receptors, Opioid/agonists , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology , Substance-Related Disorders/drug therapy , Substance-Related Disorders/physiopathology , Nociceptin Receptor , Nociceptin
SELECTION OF CITATIONS
SEARCH DETAIL