Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 952
Filter
1.
Int J Biol Macromol ; : 134246, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39098461

ABSTRACT

A novel nanoparticle screening technique was established to mostly enhance the aqueous solubility and oral bioavailability of aceclofenac using nanoparticle systems. Among the polymers investigated, sodium carboxymethylcellulose (Na-CMC) showed the greatest increase in drug solubility. Utilizing spray-drying technique, the solvent-evaporated solid dispersion (SESD), surface-attached solid dispersion (SASD), and solvent-wetted solid dispersion (SWSD) were prepared using aceclofenac and Na-CMC at a weight ratio of 1:1 in 50 % ethanol, distilled water, and ethanol, respectively. Using Na-CMC as a solid carrier, an aceclofenac-loaded liquid self-emulsifying drug delivery system was spray-dried and fluid-bed granulated together with microcrystalline cellulose, producing a solid self-nanoemulsifying drug delivery system (SNEDDS) and solid self-nanoemulsifying granule system (SNEGS), respectively. Their physicochemical properties and preclinical assessments in rats were performed. All nanoparticles exhibited very different properties, including morphology, crystallinity, and size. As a result, they significantly enhanced the solubility, dissolution, and oral bioavailability in the following order: SNEDDS ≥ SNEGS > SESD ≥ SASD ≥ SWSD. Based on our screening technique, the SNEDDS was selected as the optimal nanoparticle with the highest bioavailability of aceclofenac. Thus, our nanoparticle screening technique should be an excellent guideline for solubilization research to improve the solubility and bioavailability of many poorly water-soluble bioactive materials.

2.
Int J Pharm ; 663: 124574, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134290

ABSTRACT

Microfluidic technology has not been extensively utilized in nanocrystals manufacture, although it has been used in the production of liposomes and LNPs. This is mainly due to concerns including blockage of narrow pipes and corrosion of organic solvents on chips. In this study, a detachable stainless steel microfluidic chip with split-and-recombine (SAR) structure was engraved and used to prepare curcumin nanocrystal suspensions by a microfluidic-antisolvent precipitation method. A simulation study of the mixing activities of three chip structures was conducted by COMSOL Multiphysics software. Then the curcumin nanocrystals preparation was optimized by Box-Behnken design to screen different stabilizers and solvents. Two curcumin nanocrystals formulations with an average particle size of 59.29 nm and 168.40 nm were obtained with PDIs of 0.131 and 0.058, respectively. Compared to curcumin powder, the formulation showed an increase in dissolution rate in 0.1 M HCL while pharmacokinetic study indicated that Cmax was increased by 4.47 and 3.14 times and AUC0-∞ were 4.26 and 3.14 times greater. No clogging or deformation of the chip was observed after long usage. The results demonstrate that the stainless steel microfluidic chips with SAR structure have excellent robustness and controllability. It has the potential to be applied in GMP manufacturing of nanocrystals.

3.
Molecules ; 29(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124976

ABSTRACT

Albendazole (ABZ) is a highly effective yet poorly water-soluble antiparasitic drug known to form salts (ABZ-FMA, ABZ-DTA, and ABZ-HCl) with fumaric acid (FMA), D-tartaric acid (DTA), and hydrochloric acid (HCl). This research utilized a range of analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), powder X-ray diffraction (PXRD), dynamic vapor sorption (DVS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM), to validate and characterize the solid-state properties of these drug salts. This study also assessed the solubility and intrinsic dissolution rate (IDR) of these salts under different pH conditions compared to the active pharmaceutical ingredient (API) and conducted stability studies. Moreover, the in vivo pharmacokinetic performance of ABZ salt was evaluated. The results of this study reveal that the new solid form of ABZ is primarily associated with amino acid esters and benzimidazole groups, forming intermolecular interactions. All three ABZ salts significantly improved the solubility and dissolution rate of ABZ, with ABZ-HCl demonstrating the optimal performance. Importantly, the drug salt exhibited robust physical stability when exposed to adverse conditions, including strong light irradiation (4500 ± 500 lux), high humidity (92.5 ± 5% relative humidity), elevated temperatures (50 ± 2 °C), and accelerated test conditions (40 °C/75 ± 5% relative humidity). Lastly, the in vivo pharmacokinetic analysis demonstrated that ABZ salt led to a substantial increase in AUC(0-24) and Cmax compared to ABZ. This elevation in solubility in aqueous solvents signifies that ABZ salt exhibits characteristics that can enhance oral bioavailability and pharmacokinetics. These findings provide potential solutions for the development of more effective and innovative drug formulations.


Subject(s)
Albendazole , Biological Availability , Drug Stability , Salts , Solubility , Albendazole/chemistry , Albendazole/pharmacokinetics , Albendazole/administration & dosage , Salts/chemistry , Animals , Spectroscopy, Fourier Transform Infrared , Calorimetry, Differential Scanning , X-Ray Diffraction
4.
AAPS PharmSciTech ; 25(6): 183, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138765

ABSTRACT

The dissolution and bioavailability challenges posed by poorly water-soluble drugs continue to drive innovation in pharmaceutical formulation design. Nintedanib (NDNB) is a typical BCS class II drug that has been utilized to treat idiopathic pulmonary fibrosis (IPF). Due to the low solubility, its oral bioavailability is relatively low, limiting its therapeutical effectiveness. It is crucial to enhance the dissolution and the oral bioavailability of NDNB. In this study, we focused on the preparation of amorphous solid dispersions (ASD) using hot melt extrusion (HME). The formulation employed Kollidon® VA64 (VA64) as the polymer matrix, blended with the NDNB at a ratio of 9:1. HME was conducted at temperatures ranging from 80 °C to 220 °C. The successful preparation of ASD was confirmed through various tests including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The in-vitro cumulative release of NDNB-ASD in 2 h in a pH 6.8 medium was 8.3-fold higher than that of NDNB (p < 0.0001). In a pH 7.4 medium, it was 10 times higher (p < 0.0001). In the in-vivo pharmacokinetic experiments, the area under curve (AUC) of NDNB-ASD was 5.3-fold higher than that of NDNB and 2.2 times higher than that of commercially available soft capsules (Ofev®) (p < 0.0001). There was no recrystallization after 6 months under accelarated storage test. Our study indicated that NDNB-ASD can enhance the absorption of NDNB, thus providing a promising method to improve NDNB bioavailability in oral dosages.


Subject(s)
Biological Availability , Indoles , Solubility , Indoles/pharmacokinetics , Indoles/chemistry , Indoles/administration & dosage , Administration, Oral , Animals , Chemistry, Pharmaceutical/methods , Calorimetry, Differential Scanning/methods , X-Ray Diffraction/methods , Male , Spectroscopy, Fourier Transform Infrared/methods , Drug Compounding/methods , Rabbits , Polymers/chemistry , Hot Melt Extrusion Technology/methods , Drug Liberation
5.
Molecules ; 29(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064906

ABSTRACT

Viruses pose a significant threat to human health, causing widespread diseases and impacting the global economy. Perilla frutescens, a traditional medicine and food homologous plant, is well known for its antiviral properties. This systematic review examines the antiviral potential of Perilla frutescens, including its antiviral activity, chemical structure and pharmacological parameters. Utilizing bioinformatics analysis, we revealed the correlation between Perilla frutescens and antiviral activity, identified overlaps between Perilla frutescens target genes and virus-related genes, and explored related signaling pathways. Moreover, a classified summary of the active components of Perilla frutescens, focusing on compounds associated with antiviral activity, provides important clues for optimizing the antiviral drug development of Perilla frutescens. Our findings indicate that Perilla frutescens showed a strong antiviral effect, and its active ingredients can effectively inhibit the replication and spread of a variety of viruses in this review. The antiviral mechanisms of Perilla frutescens may involve several pathways, including enhanced immune function, modulation of inflammatory responses, and inhibition of key enzyme activities such as viral replicase. These results underscore the potential antiviral application of Perilla frutescens as a natural plant and provide important implications for the development of new antiviral drugs.


Subject(s)
Antiviral Agents , Perilla frutescens , Plant Extracts , Perilla frutescens/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Virus Replication/drug effects , Viruses/drug effects
6.
Pharmaceutics ; 16(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39065543

ABSTRACT

Current drug development tends towards complex chemical molecules, referred to as "beyond rule of five" (bRo5) compounds, which often exhibit challenging physicochemical properties. Measuring Caco-2 permeability of those compounds is difficult due to technical limitations, including poor recovery and detection sensitivity. We implemented a novel assay, with optimized incubation and analytics, to measure permeability close to equilibrium. In this setup an appropriate characterization of permeability for bRo5 compounds is achievable. This equilibrated Caco-2 assay was verified with respect to data validity, compound recovery, and in vitro to in vivo correlation for human absorption. Compared to a standard assay, it demonstrated comparable performance in predicting the human fraction absorbed (fa) for reference compounds. The equilibrated assay also successfully characterized the permeability of more than 90% of the compounds analyzed, the majority of which were bRo5 (68%). These compounds could not be measured using the standard assay. Permeability and efflux ratio (ER) were highly predictive for in vivo absorption for a large set of internal bRo5 compounds. Reference cut-offs enabled the correct classification of high, moderate, and low absorption. This optimized equilibrated Caco-2 assay closes the gap for a high-throughput cellular permeability method in the bRo5 chemical space.

7.
Article in English | MEDLINE | ID: mdl-38972898

ABSTRACT

Eugenol possesses anti-inflammatory and antioxidant properties, and may serve as a potential therapeutic agent for hepatic fibrosis. However, the development of solid eugenol formulations is challenging due to its volatility. To address this issue, this study employed porous silica to adsorb solidified eugenol. The solidified powder was characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). In addition, the differences in in vitro release and oral bioavailability between eugenol and solidified eugenol powder were investigated. The effectiveness of eugenol and eugenol powder in treating liver fibrosis was investigated using enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and histopathological observations. Our results indicate that porous silica can effectively solidify eugenol into powder at a lower dosage. Furthermore, we observed that porous silica accelerates eugenol release in vitro and in vivo. The pharmacodynamic results indicated that eugenol has a positive therapeutic effect against hepatic fibrosis and that porous silica does not affect its efficacy. In conclusion, porous silica was able to solidify eugenol, which may facilitate the preparation and storage of solid formulations.

8.
J Chromatogr A ; 1730: 465132, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38959658

ABSTRACT

In recent years, scientists have started evaluating the portion of PM-bound pollutants that may be liberated (bioaccessible fraction) in human fluids and spread through the digestive system ultimately entering systemic circulation (known as the bioavailable fraction). In the current research, an analytical procedure was validated and applied to characterize the oral bioavailable fraction of PM10 samples. The approach encompassed the determination of 49 organic contaminants. The proposed method aims to biomimetic complete mouth-gastric-intestinal system basing on an adaptation of the unified bioaccessibility method (UBM) modified by the inclusion of a dialysis membrane to mimic intestinal absorption and obtain the orally bioavailable fractions. It was followed by a vortex-assisted liquid-liquid extraction (VALLE) step, using gas chromatography-tandem mass spectrometry (GC-MS/MS). Analytical procedure was effectively validated by employing selected reaction monitoring (SRM) mode in MS/MS, matrix-matched calibration, and deuterium-labelled surrogate standards. This approach ensured heightened sensitivity, minimized matrix effects, and compensated for any losses during the process. The validation process covered various aspects, including studying linearity, determining detection and quantification limits, assessing analytical recoveries at three concentration levels, and evaluating precision both within a single day and across multiple days. The validated method was applied to PM10 samples, revealing that polycyclic aromatic hydrocarbons (PAHs) were the most frequently detected, with significant seasonal variations in their concentrations. Organophosphorus flame retardants (OPFRs) like TCPP were also detected in bioavailable fractions, highlighting their potential health impact. Bisphenols, SMCs, and PAEs were not detected, suggesting low levels in the studied urban area. Further research is needed to understand the bioavailability of PM-bound pollutants in different environments.


Subject(s)
Gas Chromatography-Mass Spectrometry , Particulate Matter , Tandem Mass Spectrometry , Particulate Matter/analysis , Particulate Matter/chemistry , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Humans , Biological Availability , Air Pollutants/analysis , Liquid-Liquid Extraction/methods , Limit of Detection , Reproducibility of Results , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/pharmacokinetics
9.
Colloids Surf B Biointerfaces ; 241: 114044, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964274

ABSTRACT

In this study, we aimed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) and a solid self-nanoemulsifying granule system (S-SNEGS) to enhance the solubility and oral bioavailability of celecoxib. This process involved the preparation of a liquid SNEDDS (L-SNEDDS) and its subsequent solidification into a S-SNEDDS and a S-SNEGS. The L-SNEDDS consisted of celecoxib (drug), Captex® 355 (Captex; oil), Tween® 80 (Tween 80; surfactant) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS; cosurfactant) in a weight ratio of 3.5:25:60:15 to produce the smallest nanoemulsion droplet size. The S-SNEDDS and S-SNEGS were prepared with L-SNEDDS/Ca-silicate/Avicel PH 101 in a weight ratio of 103.5:50:0 using a spray dryer and 103.5:50:100 using a fluid bed granulator, respectively. We compared the two novel developed systems and celecoxib powder based on their solubility, dissolution rate, physicochemical properties, flow properties and oral bioavailability in rats. S-SNEGS showed a significant improvement in solubility and dissolution rate compared to S-SNEDDS and celecoxib powder. Both systems had been converted from crystalline drug to amorphous form. Furthermore, S-SNEGS exhibited a significantly reduced angle of repose, compressibility index and Hausner ratio than S-SNEDDS, suggesting that S-SNEGS was significantly superior in flow properties. Compared to S-SNEDDS and celecoxib powder, S-SNEGS increased the oral bioavailability (AUC value) in rats by 1.3 and 4.5-fold, respectively. Therefore, S-SNEGS wolud be recommended as a solid self-nanoemulsifying system suitable for poorly water-soluble celecoxib.


Subject(s)
Biological Availability , Celecoxib , Drug Delivery Systems , Emulsions , Rats, Sprague-Dawley , Solubility , Water , Celecoxib/chemistry , Celecoxib/pharmacokinetics , Celecoxib/administration & dosage , Animals , Emulsions/chemistry , Administration, Oral , Male , Water/chemistry , Rats , Particle Size , Surface-Active Agents/chemistry , Nanoparticles/chemistry , Polysorbates/chemistry
10.
Xenobiotica ; : 1-10, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39058618

ABSTRACT

Pibothiadine (PBD; HEC121120) is a novel hepatitis B virus capsid assembly modulator based on GLS4 (morphothiadine) and has inhibitory activities against resistant strains.To assess the overall preclinical drug metabolism and pharmacokinetics (DMPK) properties of PBD, in vivo pharmacokinetics studies in rats and dogs have been performed along with a series of in vitro metabolism assays.The oral bioavailability of PBD in rats and dogs might be related to its medium permeability in Caco-2 cells and largely be impacted by the pH-dependent solubility. PBD was highly distributed to the liver where the local exposure was 16.4 fold of the system exposure. PBD showed relatively low metabolic rate in recombinant human cytochrome P450 enzymes, whereas low to moderate in vitro clearance in liver microsomes and low (dog) to moderate (rat) in vivo clearance. Furthermore, ß-oxidation and dehydrogenation were proposed as the primary metabolic pathways of PBD in rats.Compared to GLS4, the higher systemic exposure of PBD might be attributed to its improved oral absorption and metabolic stability. In addition, the enhanced liver/plasma exposure ratio could further increase the local exposure around the target. These improved DMPK properties might indicate better development of PBD in the clinical phase.

11.
Eur J Med Chem ; 276: 116646, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38972080

ABSTRACT

Cycloicaritin (CICT), a bioactive flavonoid derived from the genus Epimedium, exhibits a variety of beneficial biological activities, including promising anticancer effects. However, its poor oral bioavailability is attributed to its extremely low aqueous solubility and rapid elimination via phase II conjugative metabolism. To overcome these limitations, we designed and synthesized a series of carbamate-bridged prodrugs, protecting the hydroxyl group at the 3-position of cycloicaritin by binding with the N-terminus of a natural amino acid. The optimal prodrug 4b demonstrated a significant increase in aqueous solubility as compared to CICT, as well as improved stability in phase II metabolism, while allowing for a rapid release of CICT in the blood upon gastrointestinal absorption. The prodrug 4b also facilitated oral absorption through organic anion-transporting polypeptide 2B1-mediated transport and exhibited moderate cytotoxicity. Importantly, the prodrug enhanced the oral bioavailability of CICT and displayed dose-dependent antitumor activity with superior safety. In summary, the prodrug 4b is a novel potential antitumor drug candidate, and the carbamate-bridged amino acid prodrug approach is a promising strategy for the oral delivery of CICT.


Subject(s)
Amino Acids , Antineoplastic Agents , Carbamates , Drug Design , Drug Screening Assays, Antitumor , Prodrugs , Solubility , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Humans , Carbamates/chemistry , Carbamates/pharmacology , Carbamates/chemical synthesis , Carbamates/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Structure-Activity Relationship , Amino Acids/chemistry , Amino Acids/pharmacology , Amino Acids/chemical synthesis , Molecular Structure , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Mice , Water/chemistry , Cell Line, Tumor , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/chemical synthesis , Flavonoids/pharmacokinetics , Male
12.
Food Chem ; 458: 140218, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38964104

ABSTRACT

Carthamus tinctorius L. (Safflower) is extensively used as a functional food and herbal medicine, with its application closely associated with hydroxysafflor yellow A (HSYA). However, the low oral bioavailability of HSYA in safflower extract (SFE) limits its health benefits and application. Our study found that co-administration of 250, 330, and 400 mg/kg peach kernel oil (PKO) increased the oral bioavailability of HSYA in SFE by 1.99-, 2.11-, and 2.49-fold, respectively. The enhanced bioavailability is attributed to improved lipid solubility and intestinal permeability of HSYA in SFE due to PKO. PKO is believed to modify membrane fluidity and tight junctions, increase paracellular penetration, and inhibit the expression and function of P-glycoprotein, enhancing the transcellular transport of substrates. These mechanisms suggest that PKO is an effective absorption enhancer. Our findings provide valuable insights for developing functional foods with improved bioavailability.

13.
Eur J Med Chem ; 275: 116576, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38861808

ABSTRACT

Sepsis can quickly result in fatality for critically ill individuals, while liver damage can expedite the progression of sepsis, necessitating the exploration of new strategies for treating hepatic sepsis. PDE4 has been identified as a potential target for the treatment of liver damage. The scaffold hopping of lead compounds FCPR16 and Z19153 led to the discovery of a novel 7-methoxybenzofuran PDE4 inhibitor 4e, demonstrating better PDE4B (IC50 = 10.0 nM) and PDE4D (IC50 = 15.2 nM) inhibitor activity as a potential anti-hepatic sepsis drug in this study. Compared with FCPR16 and Z19153, 4e displayed improved oral bioavailability (F = 66 %) and longer half-life (t1/2 = 2.0 h) in SD rats, which means it can be more easily administered and has a longer-lasting effect. In the D-GalN/LPS-induced liver injury model, 4e exhibited excellent hepatoprotective activity against hepatic sepsis by decreasing ALT and AST levels and inflammatory infiltrating areas.


Subject(s)
Benzofurans , Galactosamine , Phosphodiesterase 4 Inhibitors , Sepsis , Animals , Humans , Male , Rats , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis , Chemical and Drug Induced Liver Injury/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dose-Response Relationship, Drug , Drug Discovery , Galactosamine/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Liver/drug effects , Liver/pathology , Molecular Docking Simulation , Molecular Structure , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/chemical synthesis , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/chemical synthesis , Rats, Sprague-Dawley , Sepsis/drug therapy , Structure-Activity Relationship
14.
Int J Nanomedicine ; 19: 5139-5156, 2024.
Article in English | MEDLINE | ID: mdl-38859954

ABSTRACT

Introduction: Although flavonoid compounds exhibit various pharmacological activities, their clinical applications are restricted by low oral bioavailability owing to their poor solubility. Nanocrystals (NCs) represent an excellent strategy for enhancing the oral bioavailability of flavonoids. Hydroxyethyl starch (HES), a biomaterial compound used as a plasma expander, could be an ideal stabilizer material for preparing flavonoid NCs. Methods: HES was used to stabilize flavonoid nanocrystals (NCs), using luteolin (LUT) as a model drug. After full characterization, the freeze-drying and storage stability, solubility, intestinal absorption, pharmacokinetics, and in vivo anti-hyperuricemic effect of the optimized HES-stabilized LUT NCs (LUT-HES NCs) were investigated. Results: Uniformed LUT-HES NCs were prepared with mean particle size of 191.1±16.8 nm, zeta potential of about -23 mV, drug encapsulation efficiency of 98.52 ± 1.01%, and drug loading of 49.26 ± 0.50%. The freeze-dried LUT-HES NCs powder showed good re-dispersibility and storage stability for 9 months. Notably, compared with the coarse drug, LUT-HES NCs exhibited improved saturation solubility (7.49 times), increased drug dissolution rate, enhanced Caco-2 cellular uptake (2.78 times) and oral bioavailability (Fr=355.7%). Pharmacodynamic studies showed that LUT-HES NCs remarkably lowered serum uric acid levels by 69.93% and ameliorated renal damage in hyperuricemic mice. Conclusion: HES is a potential stabilizer for poorly soluble flavonoid NCs and provides a promising strategy for the clinical application of these compounds. LUT-HES NCs may be an alternative or complementary strategy for hyperuricemia treatment.


Subject(s)
Hydroxyethyl Starch Derivatives , Hyperuricemia , Luteolin , Nanoparticles , Animals , Nanoparticles/chemistry , Hydroxyethyl Starch Derivatives/chemistry , Hydroxyethyl Starch Derivatives/pharmacokinetics , Hydroxyethyl Starch Derivatives/administration & dosage , Hydroxyethyl Starch Derivatives/pharmacology , Luteolin/pharmacokinetics , Luteolin/pharmacology , Luteolin/chemistry , Luteolin/administration & dosage , Mice , Caco-2 Cells , Hyperuricemia/drug therapy , Hyperuricemia/blood , Humans , Male , Particle Size , Disease Models, Animal , Solubility , Uric Acid/blood , Uric Acid/chemistry , Biological Availability , Administration, Oral , Drug Stability
15.
Article in English | MEDLINE | ID: mdl-38918978

ABSTRACT

INTRODUCTION: The objective of the reported work was to develop Montelukast sodium (MS) solid lipid nanoparticles (MS-SLNs) to ameliorate its oral bio-absorption. Herein, the highpressure homogenization (HPH) principle was utilized for the fabrication of MS-SLNs. METHOD: The study encompasses a 23 full factorial statistical design approach where mean particle size (Y1) and percent entrapment efficiency (Y2) were screened as dependent variables while, the concentration of lipid (X1), surfactant (X2), and co-surfactant (X3) were screened as independent variables. The investigation of MS-SLNs by DSC and XRD studies unveiled the molecular dispersion of MS into the SLNs while TEM study showed the smooth surface of developed MSSLNs. The optimized MS-SLNs exhibited mean particle size (MPS) = 115.5 ± 1.27 nm, polydispersity index (PDI) = 0.256 ± 0.04, zeta potential (ζ) = -21.9 ± 0.32 mV and entrapment efficiency (EE) = 90.97 ± 1.12 %. The In vivo pharmacokinetic study performed in Albino Wistar rats revealed 2.87-fold increments in oral bioavailability. RESULTS: The accelerated stability studies of optimized formulation showed good physical and chemical stability. The shelf life estimated for the developed MS-SLN was found to be 22.38 months. CONCLUSION: At the outset, the developed MS-SLNs formulation showed a significant increment in oral bioavailability and also exhibited excellent stability in exaggerated storage conditions.

16.
Pharmaceutics ; 16(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931937

ABSTRACT

Progesterone (PROG) is a natural steroid hormone with low solubility and high permeability that belongs to biopharmaceutics classification system class II. In this study, novel pharmaceutical cocrystals of PROG were successfully prepared by solvent evaporation or a liquid-assisted grinding process aimed at enhancing its solubility and bioavailability. The cocrystal formers selected based on crystal engineering principles were carboxylic acids, namely, 4-formylbenzeneboronic acid (BBA), isophthalic acid (IPA), and 3-nitrophthalic acid (NPA). The cocrystal structures were characterized using multiple techniques. Single-crystal X-ray diffraction results showed that the carbonyl group, acting as a hydrogen bond acceptor, was pivotal in the cocrystal network formation, with C-H···O interactions further stabilizing the crystals. The cocrystals exhibited improved solubility and dissolution profiles in vitro, with no significant changes in hygroscopicity. The parallel artificial membrane permeability assay (PAMPA) models indicated that the cocrystals retained PROG's high permeability. Pharmacokinetic studies in Sprague-Dawley rats revealed that all cocrystals increased PROG exposure, with AUC(0~∞) values for PROG-BBA, PROG-IPA, and PROG-NPA being 742.59, 1201.72 and 442.67 h·ng·mL-1, respectively. These values are substantially higher compared to free PROG, which had an AUC(0~∞) of 301.48 h·ng·mL-1. Notably, PROG-IPA provided the highest AUC improvement, indicating a significant enhancement in bioavailability. Collectively, the study concludes that the cocrystal approach is a valuable strategy for optimizing the physicochemical properties and oral bioavailability of PROG, with potential implications for the development of other poor water-soluble drugs.

17.
Pharmaceutics ; 16(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38794296

ABSTRACT

Liraglutide (LIRA) is a glucagon-like peptide-1 (GLP-1) receptor agonist renowned for its efficacy in treating type 2 diabetes mellitus (T2DM) and is typically administered via subcutaneous injections. Oral delivery, although more desirable for being painless and potentially enhancing patient adherence, is challenged by the peptide's low bioavailability and vulnerability to digestive enzymes. This study aimed to develop LIRA-containing zein-based nanoparticles stabilized with eudragit RS100 and chitosan for oral use (Z-ERS-CS/LIRA). These nanoparticles demonstrated a spherical shape, with a mean diameter of 238.6 nm, a polydispersity index of 0.099, a zeta potential of +40.9 mV, and an encapsulation efficiency of 41%. In vitro release studies indicated a prolonged release, with up to 61% of LIRA released over 24 h. Notably, the nanoparticles showed considerable resistance and stability in simulated gastric and intestinal fluids, suggesting protection from pH and enzymatic degradation. Pharmacokinetic analysis revealed that orally administered Z-ERS-CS/LIRA paralleled the pharmacokinetic profile seen with subcutaneously delivered LIRA. Furthermore, in vivo tests on a diabetic rat model showed that Z-ERS-CS/LIRA significantly controlled glucose levels, comparable to the results observed with free LIRA. The findings underscore Z-ERS-CS/LIRA nanoparticles as a promising approach for oral LIRA delivery in T2DM management.

18.
Int J Pharm ; 658: 124196, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703933

ABSTRACT

The aim of this study was to prepare nintedanib nanocrystals (BIBF-NCs) to lower the solubility of the drug in the stomach, maintain the supersaturation of the drug in the intestine, and improve the oral absorption of nintedanib (BIBF). In this study, BIBF-NCs were prepared by acid solubilization and alkaline precipitation following nano granding method, with a particle size of 290.80 nm and a zeta potential of -49.13 mV. Subsequently, Nintedanib enteric-coated nanocrystals (BIBF-NCs@L100) were obtained by coating with Eudragit L100. The microscopic morphology, crystalline characteristics, stability, and in vitro dissolution of BIBF-NCs and BIBF-NCs@L100 were also studied. In addition, the in vivo pharmacokinetic behaviors of Samples prepared according to the prescription process of commercially available soft capsules (soft capsules), BIBF-NCs, and BIBF-NCs@L100 were further investigated. The results showed that the oral bioavailability of BIBF-NCs and BIBF-NCs@L100 were increased by 1.43 and 2.58 times, compared with that of the soft capsules. BIBF-NCs@L100 effectively reduced the release of BIBF in the formulation in the stomach, allowing more drug to reach the intestine in the form of nanocrystals, maintaining the supersaturation in the intestine, thereby improving the oral bioavailability of the drug.


Subject(s)
Biological Availability , Indoles , Nanoparticles , Particle Size , Polymethacrylic Acids , Solubility , Nanoparticles/chemistry , Indoles/pharmacokinetics , Indoles/administration & dosage , Indoles/chemistry , Animals , Administration, Oral , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/pharmacokinetics , Male , Drug Liberation , Rats, Sprague-Dawley
19.
Eur J Med Chem ; 273: 116492, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38762918

ABSTRACT

Paclitaxel (PTX) is considered the blockbuster chemotherapy treatment for cancer. Paclitaxel's (PTX) oral administration has proven to be extremely difficult, mostly because of its susceptibility to intestinal P-glycoprotein (P-gp) and cytochrome P450 (CYP3A4). The concurrent local inhibition of intestinal P-gp and CYP3A4 is a promising approach to improve the oral bioavailability of paclitaxel while avoiding potential unfavorable side effects of their systemic inhibition. Herein, we report the rational design and evaluation of novel dual potent inhibitors of P-gp and CYP3A4 using an anthranilamide derivative tariquidar as a starting point for their structural optimizations. Compound 14f, bearing N-imidazolylbenzyl side chain, was found to have potent and selective P-gp (EC50 = 28 nM) and CYP3A4 (IC50 = 223 nM) inhibitory activities with low absorption potential (Papp (A-to-B) <0.06). In vivo, inhibitor 14f improved the oral absorption of paclitaxel by 6 times in mice and by 30 times in rats as compared to vehicle, while 14f itself remained poorly absorbed. Compound 14f, possessing dual P-gp and CYP3A4 inhibitory activities, offered additional enhancement in paclitaxel oral absorption compared to tariquidar in mice. Evaluating the CYP effect of 14f on oral absorption of paclitaxel requires considering the variations in CYP expression between animal species. This study provides further medicinal chemistry advice on strategies for resolving concerns with the oral administration of chemotherapeutic agents.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Cytochrome P-450 CYP3A Inhibitors , Cytochrome P-450 CYP3A , Drug Design , ortho-Aminobenzoates , Cytochrome P-450 CYP3A/metabolism , Humans , Animals , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/chemical synthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Mice , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A Inhibitors/chemical synthesis , Cytochrome P-450 CYP3A Inhibitors/chemistry , Structure-Activity Relationship , Molecular Structure , Models, Molecular , Rats , Dose-Response Relationship, Drug , Paclitaxel/pharmacology , Paclitaxel/chemistry , Male
20.
Int J Pharm ; 658: 124200, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38710298

ABSTRACT

This study aimed to develop oral lipidic hybrids of amikacin sulfate (AMK), incorporating thiolated chitosan as a P-glycoprotein (P-gp) inhibitor to enhance intestinal absorptivity and bioavailability. Three formulations were designed: PEGylated Liposomes, Chitosan-functionalized PEGylated (Chito-PEGylated) Lipidic Hybrids, and Thiolated Chito-PEGylated Lipidic Hybrids. The physical characteristics of nanovesicles were assessed. Ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies were conducted to evaluate the formulations' potential to enhance AMK intestinal permeability. In-vivo pharmacokinetic studies in rats and histological/biochemical investigations assessed the safety profile and oral bioavailability. The AMK-loaded Thiolated Chito-PEGylated Lipidic Hybrids exhibited favorable physical characteristics, higher ex-vivo permeation parameters, and verified P-gp inhibition via CLSM. They demonstrated heightened oral bioavailability (68.62% absolute bioavailability) and a sufficient safety profile. Relative bioavailability was significantly higher (1556.3% and 448.79%) compared to PEGylated Liposomes and Chito-PEGylated Lipidic Hybrids, respectively, indicating remarkable oral AMK delivery with fewer doses, reduced side effects, and enhanced patient compliance.


Subject(s)
Amikacin , Anti-Bacterial Agents , Biological Availability , Chitosan , Lipids , Liposomes , Polyethylene Glycols , Animals , Polyethylene Glycols/chemistry , Male , Administration, Oral , Chitosan/chemistry , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Amikacin/chemistry , Lipids/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Rats , Rats, Sprague-Dawley , Intestinal Absorption , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacokinetics , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL