Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters











Publication year range
1.
Chemistry ; : e202403074, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363739

ABSTRACT

The use of dissolving metal electrodes for the direct electrochemical synthesis of metal complexes has been used widely in the last decade. A major benefit of the electrochemical approach is the minimal by-products resulting from the synthesis. As such, metal complexes can be produced on-demand and used directly in catalysis without the need for purification. Furthermore, the electrochemical method enables the production of metal complexes that cannot be synthesized using other methods, including those with base-sensitive ligands. General principles of the electrochemical method and recent advances in the field are discussed.

2.
Angew Chem Int Ed Engl ; 63(35): e202407945, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38856098

ABSTRACT

Carbodicarbenes are strong C-donor ligands, which have found numerous applications in organometallic and main group element chemistry. Herein, we report a structurally distinct carbodicarbene ligand, which is formed by dinitrogenative coupling of a Fischer carbene complex with an N-heterocyclic diazoolefin. The resulting carbonyl complex serves as a stable source for the mixed Arduengo-Fischer carbodicarbene ligand. Facile ligand transfer reactions were demonstrated to occur with gold(I), copper(I), palladium(II), and rhodium(I) complexes.

3.
Beilstein J Org Chem ; 20: 973-1000, 2024.
Article in English | MEDLINE | ID: mdl-38711593

ABSTRACT

Carbonylation processes have become widely recognized as a versatile, convenient, and low-cost method for the synthesis of high-value compounds. Given the great importance of heterocyclic compounds, the carbonylative approach has become increasingly important for their synthesis. In this mini-review, as a class of benzo-fused nitrogen-containing heterocyclic compounds, we summarized and discussed the recent achievements on the synthesis and functionalization of indole derivatives via carbonylative approaches.

4.
Angew Chem Int Ed Engl ; 63(32): e202407427, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38775385

ABSTRACT

By exploiting the electronic capabilities of the N-heterocyclic boryloxy (NHBO) ligand, we have synthesized "naked" acyclic gallyl [Ga{OB(NDippCH)2}2]- and indyl [In{OB(NDippCH)2}2]- anions (as their [K(2.2.2-crypt)]+ salts) through K+ abstraction from [KGa{OB(NDippCH)2}2] and [KIn{OB(NDippCH)2}2] using 2.2.2-crypt. These systems represent the first O-ligated gallyl/indyl systems, are ultimately accessed from cyclopentadienyl GaI/InI precursors by substitution chemistry, and display nucleophilic reactivity which is strongly influenced by the presence (or otherwise) of the K+ counterion.

5.
Acta Crystallogr C Struct Chem ; 80(Pt 5): 148-152, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38607673

ABSTRACT

Typically reactions of N-heterocyclic carbenes with transition metals are straightforward and require a carbene salt, a base strong enough to deprotonate such a salt and a metal. Yet when carbene precursors are in the form of triazolium salts, reaction may not proceed as easily as expected. In our work, we intended to obtain a triazolylidene complex of iron(II) chloride, but due to the presence of small amounts of water in the tetrahydrofuran solvent used, bis(acetonitrile)tetrakis(1-benzyl-1H-1,2,4-triazole-κN4)iron(II) µ-oxido-bis[trichloridoferrate(III)] acetonitrile disolvate, [Fe(C9H9N3)4(CH3CN)2][Fe2Cl6O]·2CH3CN - an interesting anion with a linear geometry of the O atom - was formed instead of the iron carbene complex. Reaction proceeded via cleavage of the alkyl N-substituent of the triazolium salt. The formation of the product was confirmed by X-ray crystallography. The crystal structure and possible reaction pathways are discussed.

6.
Adv Sci (Weinh) ; 11(24): e2308125, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38610109

ABSTRACT

The synthesis of lanthanide-based organometallic sandwich compounds is very appealing regarding their potential for single-molecule magnetism. Here, it is exploited by on-surface synthesis to design unprecedented lanthanide-directed organometallic sandwich complexes on Au(111). The reported compounds consist of Dy or Er atoms sandwiched between partially deprotonated hexahydroxybenzene molecules, thus introducing a distinct family of homoleptic organometallic sandwiches based on six-membered ring ligands. Their structural, electronic, and magnetic properties are investigated by scanning tunneling microscopy and spectroscopy, X-ray absorption spectroscopy, X-ray linear and circular magnetic dichroism, and X-ray photoelectron spectroscopy, complemented by density functional theory-based calculations. Both lanthanide complexes self-assemble in close-packed islands featuring a hexagonal lattice. It is unveiled that, despite exhibiting analogous self-assembly, the erbium-based species is magnetically isotropic, whereas the dysprosium-based compound features an in-plane magnetization.

7.
Chempluschem ; 89(6): e202300646, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38291001

ABSTRACT

The flash organometallic catalysis is a new concept that refers to the study of fast and controlled organometallic catalytic reactions by using microfluidic devices. Flash reactions' kinetics (ms-s scale) is often ignored due to the lack of proper research tool in organometallic chemistry. The development of microfluidic systems offers the opportunity to discover under-studied mechanisms and new reactions. In this concept, the basic theory of kinetic measurement in a microreactor is briefly reviewed and then two examples on studying flash organometallic catalytic transformation are introduced. One example is the discovery of a highly active palladium catalytic species for Suzuki Coupling and the other example is the study of a neglected isomerization catalytic cycle with a time scale of seconds before isomerization-hydroformylation by customized microfluidic devices. The last part is summary and prospect of this new area. Customizing a microfluidic device with good engineering design for a target reaction supports flash reactions' kinetic experimentation and could become a general strategy in chemistry lab.

8.
ACS Appl Mater Interfaces ; 15(46): 53498-53514, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37945527

ABSTRACT

The development of new methods of catalyst synthesis with the potential to generate active site structures orthogonal to those accessible by traditional protocols is of great importance for discovering new materials for addressing challenges in the evolving energy and chemical economy. In this work, the generality of oxidative grafting of organometallic and well-defined molecular metal precursors onto redox-active surfaces such as manganese dioxide (MnO2) and lithium manganese oxide (LiMn2O4) is investigated. Nine molecular metal precursors are explored, spanning groups 4-11 and each of the three periods of the transition metal series. The byproducts of the oxidative grafting reaction, a mixture of protodemetalation and ligand homocoupling for several organometallic precursors, was found to provide insights into the mechanism of the grafting reaction, suggesting oxidation of both the metal d-orbitals, as well as the metal-carbon σ-bonds, resulting in ejection of the ligand radical fragment. Analysis of the supported structures and oxidation state by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) suggests that several of the chemisorbed metal ions are intercalated into interstitial vacancies of the surface structure while other complexes form intact molecular fragments on the surface. Proof of concept for the use of this metalation protocol to generate diverse, metal-dependent catalytic performance is demonstrated by the application of these materials in the conversion of cyclohexane to K/A oil (cyclohexanol and cyclohexanone) with tert-butyl hydroperoxide, as well as in the low-temperature (T ≤ 50 °C) oxidation of carbon monoxide to carbon dioxide.

9.
Chem Asian J ; 18(24): e202300753, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37886881

ABSTRACT

Using the [3+2] cycloaddition reaction of [HC≡C-GePh2 -]2 (1) and a number of RCH2 N3 , this work described the synthesis of a series of novel heterocyclic digermanes, bitriazoles [1,4-C2 HN3 (CH2 R)GePh2 -]2 , 2-12 (R=Ph, p-Tol, p-C6 H4 NMe2 , p-C6 H4 OMe, p-C6 H4 Br, m-C6 H4 NO2 , 2-Naphth, CH2 -p-OC6 H4 CHO, CH2 -p-OC6 H4 COOMe, CH2 P(O)(OEt)2 , COOEt), difficult to produce by other methods. The structural peculiarities of these compounds were studied in detail by NMR spectroscopy and by XRD analysis (for 6, 9 and 10). The properties of 1-12 were studied by UV/vis and luminescence emission spectroscopy, electrochemistry and DFT calculations, indicating an effective conjugation in their molecules.

10.
Chemistry ; 29(58): e202302130, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37681691

ABSTRACT

Numerous synthetic models of the FeMo-co cluster of nitrogenases have been proposed to find the simplest structure with relevant reactivity. Indeed, such structures are able to perform multi-electrons reduction processes, such as the conversion of N2 to ammonia, and of CO2 into methane and alkenes. The most challenging parameter to imitate is indeed the central carbide ligand, which is believed to maintain the integrity of iron sulfide assembly during the course of catalytic cycles. The study proposes the use of bis(diphenylthiophosphinoyl)methanediide (SCS)2- as an ideal platform for the synthesis of bi- and tetra-metallic iron complexes, in which the iron-carbon interaction is maintained upon structural diversification and redox state changes.

11.
Chemistry ; 29(65): e202302180, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37702918

ABSTRACT

The bis(azolium) salt [L1-H2 ]Br2 was found to serve as a suitable platform for accessing the heterobimetallic IrIII -M (M=PdII /AuI ) and PdII -IrIII complexes. Initially, selective mono-metalation of [L1-H2 ]Br2 yielded an orthometalated IrIII - or non-orthometalated PdII -complex. Sequential metalation of the mono-IrIII complex resulted in the formation of heterobimetallic IrIII -PdII /AuI complexes. Similarly, a distinct heterobimetallic PdII -IrIII complex was synthesized starting from the mono-PdII complex. Further, the corresponding homobimetallic IrIII -IrIII and PdII -PdII complexes were directly obtained from [L1-H2 ]Br2 . Additionally, monometallic PdII and IrIII analogues were synthesized from [L2-H]Br and [L3-H]Br, respectively. The heterobimetallic IrIII -PdII and PdII -IrIII complexes were then evaluated as catalysts in various one-pot tandem catalytic reactions in which they demonstrated superior activity than the mixtures of both their corresponding homobimetallic IrIII -IrIII /PdII -PdII and monometallic IrIII /PdII counterparts, under the constant concentrations of metal centers. Moreover, while comparing complexes IrIII -PdII and PdII -IrIII , the former exhibits higher activity in all the studied reactions. All these findings suggest the presence of some form of cooperativity between the two metal centers (Ir and Pd) connected by a single ligand framework in IrIII -PdII and PdII -IrIII complex, with IrIII -PdII displaying better cooperativity that has been validated by electrochemical, NMR, and DFT studies.

12.
Chempluschem ; 88(11): e202300234, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37306394

ABSTRACT

A series of pseudorotaxanes with supramolecular organometallic silver(I) and gold(I) pillarplexes acting as rings and different α,ω-dicarboxylic acids as axle components are reported. The successful formation of the host-guest complexes is shown by 1 H NMR spectroscopy and respective NMR titration. Additional evaluation with ITC titration experiments yielded dissociation constants (Kd ) ranging from 10-5 to 10-7  M. Single-crystal X-Ray diffraction analysis reveals a particularly exciting pore alignment of different examples in the solid state depending on the length of the guest. The work highlights, that dicarboxylic acids can penetrate the tight tubular pillarplex pore, paving the way to future mechanically interlocked molecules and materials.

13.
Angew Chem Int Ed Engl ; 62(34): e202308625, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37387555

ABSTRACT

Bent (hetero)allenes such as carbodicarbenes and carbodiphosphoranes can act as neutral C-donor ligands, and diverse applications in coordination chemistry have been reported. N-Heterocyclic diazoolefins are heterocumulenes, which can function in a similar fashion as L-type ligands. Herein, we describe the synthesis and the reactivity of an anionic diazoolefin. This compound displays distinct reactivity compared to neutral diazoolefins, as evidenced by the preparation of diazo compounds via protonation, alkylation, or silylation. The anionic diazoolefin can be employed as an ambidentate, X-type ligand in salt metathesis reactions with metal halide complexes. Extrusion of dinitrogen was observed in a reaction with PCl(NiPr2 )2 , resulting in a stable phosphinocarbene.

14.
Chemphyschem ; 24(14): e202300077, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37155574

ABSTRACT

Shaping of nanomaterials is a necessary step for their inclusion in electronic devices and batteries. For this purpose, the formulation of a moldable material including these nanomaterials is desirable. Organomineral gels are a very interesting option, since the components of the nanomaterial itself form a gel without the help of a binder. As a consequence, the properties of the nanomaterial are not diluted by the binder. In this article we studied organometallic gels based on a [ZnCy2 ] organometallic precursor and a primary alkyl amine which together forms spontaneously gels after few hours. We identified the main parameters controlling the gel properties monitored by rheology and NMR measurements The experiments demonstrate that the gelation time depends on the length of the alkyl chain of the amine and that the gelation mechanism derived firstly from the rigidification of the aliphatic chains of the amine, which takes precedence over the oligomerization of the inorganic backbone. This result highlights that the control of the rheological properties of organometallic gels remains mainly governed by the choice of the amine.

15.
Molecules ; 28(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050013

ABSTRACT

Diiron µ-aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(µ-CO){µ-CN(Me)(R)}]CF3SO3 (R = Xyl, [1aNCMe]CF3SO3; R = Me, [1bNCMe]CF3SO3; R = Cy, [1cNCMe]CF3SO3; R = CH2Ph, [1dNCMe]CF3SO3), freshly prepared from tricarbonyl precursors [1a-d]CF3SO3, reacted with NaOCN (in acetone) and NBu4SCN (in dichloromethane) to give [Fe2Cp2(kN-NCO)(CO)(µ-CO){µ-CN(Me)(R)}] (R = Xyl, 2a; Me, 2b; Cy, 2c) and [Fe2Cp2(kN-NCS)(CO)(µ-CO){µ-CN(Me)(CH2Ph)}], 3 in 67-81% yields via substitution of the acetonitrile ligand. The reaction of [1aNCMe-1cNCMe]CF3SO3 with KSeCN in THF at reflux temperature led to the cyanide complexes [Fe2Cp2(CN)(CO)(µ-CO){µ-CNMe(R)}], 6a-c (45-67%). When the reaction of [1aNCMe]CF3SO3 with KSeCN was performed in acetone at room temperature, subsequent careful chromatography allowed the separation of moderate amounts of [Fe2Cp2(kSe-SeCN)(CO)(µ-CO){µ-CN(Me)(Xyl)}], 4a, and [Fe2Cp2(kN-NCSe)(CO)(µ-CO){µ-CN(Me)(Xyl)}], 5a. All products were fully characterized by elemental analysis, IR, and multinuclear NMR spectroscopy; moreover, the molecular structure of trans-6b was ascertained by single crystal X-ray diffraction. DFT calculations were carried out to shed light on the coordination mode and stability of the {NCSe-} fragment.

16.
Angew Chem Int Ed Engl ; 62(4): e202214899, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36445783

ABSTRACT

Homometallic copper complexes with alkenylidene ligands are discussed as intermediates in catalysis but the isolation of such complexes has remained elusive. Herein, we report the structural characterization of copper complexes with bridging and terminal alkenylidene ligands. The compounds were obtained by irradiation of CuI complexes with N-heterocyclic diazoolefin ligands. The complex with a terminal alkenylidene ligand required isolation in a crystalline matrix, and its structural characterization was enabled by in crystallo photolysis at low temperature.

17.
Chemphyschem ; 24(2): e202200391, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36164745

ABSTRACT

We studied the formation and surface behavior of Pt(II) and Pd(II) complexes with ligand systems derived from two nitrile-functionalized ionic liquids (ILs) in solution using angle-resolved X-ray photoelectron spectroscopy (ARXPS). These ligand systems enabled a high solubility of the metal complexes in IL solution. The complexes were prepared by simple ligand substitution under vacuum conditions in defined excess of the coordinating ILs, [C3 CNC1 Im][Tf2 N] and [C1 CNC1 Pip][Tf2 N], to immediately yield solutions of the final products. The ILs differ in the cationic head group and the chain length of the functionalized substituent. Our XPS measurements on the neat ILs gave insights in the electronic properties of the coordinating substituents revealing differences in donation capability and stability of the complexes. Investigations on the composition of the outermost surface layers using ARXPS revealed no surface affinity of the nitrile-functionalized chains in the neat ILs. Solutions of the formed complexes in the nitrile ILs showed homogeneous distribution of the solute at the surface with the heterocyclic moieties preferentially orientated towards the vacuum, while the metal centers are rather located further away from the IL/vacuum interface.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Photoelectron Spectroscopy , Ligands , Cations , Metals
18.
Adv Sci (Weinh) ; 10(5): e2204929, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36529954

ABSTRACT

Application of nanocomposites in daily life requires not only small nanoparticles (NPs) well dispersed in a matrix, but also a manufacturing process that is mindful of the operator and the environment. Avoiding any exposure to NPs is one such way, and direct liquid reaction-injection (DLRI) aims to fulfill this need. DLRI is based on the controlled in situ synthesis of NPs from the decomposition of suitable organometallic precursors in conditions that are compatible with a pulsed injection mode of an aerosol into a downstream process. Coupled with low-pressure plasma, DLRI produces nanocomposite with homogeneously well-dispersed small nanoparticles that in the particular case of ZnO-DLC nanocomposite exhibit unique properties. DLRI favorably compares with the direct liquid injection of ex situ formed NPs. The exothermic hydrolysis reaction of the organometallic precursor at the droplet-gas interface leads to the injection of small and highly dispersed NPs and, consequently, the deposition of fine and controlled distribution in the nanocomposite. The scope of DLRI nanosynthesis has been extended to several metal oxides such as zinc, tin, tungsten, and copper to generalize the concept. Hence, DLRI is an attractive method to synthesize, inject, and deposit nanoparticles and meets the prevention and atom economy requirements of green chemistry.

19.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499095

ABSTRACT

Non-covalent interactions are one of the key topics in coordination and organometallic chemistry. Examples of such weak interactions are hydrogen, halogen, and chalcogen bonds, stacking interactions, metallophilic contacts, etc. Non-covalent interactions play an important role in materials science, catalysis, and medicinal chemistry. The aim of this Special Issue of International Journal of Molecular Sciences, entitled "Non-Covalent Interactions in Coordination and Organometallic Chemistry", is to cover the most recent progress in the rapidly growing field of non-covalent interactions in coordination and organometallic chemistry. Both experimental and theoretical studies, fundamental and applied research and any types of manuscripts are welcome for consideration.


Subject(s)
Chemistry, Organic , Materials Science , Catalysis
20.
Chemistry ; 28(69): e202202932, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36409832

ABSTRACT

In this work, we report the preparation of multiple interpnictogen chain compounds with three consecutive pnictogen atoms and terminal Ar2 Bi fragments (Ar=Ph, Mes). Symmetrical compounds of the form Ar2 Bi-E(tBu)-Bi2 Ar (1: Ar=Ph, E=P; 2: Ar=Ph, Mes, E=As) as well as ternary interpnictogen compounds of the form Ar2 Bi-E1 (tBu)-E2 tBu2 (Ar=Ph, Mes; 4: E1 =P, E2 =As; 5: E1 =P, E2 =Sb; 6: E1 =As, E2 =P) were prepared. The decomposition in solution at room temperature and under the influence of light was studied for compounds 1-6. The reactivity of 1Ph and 2Ph with the small N-heterocyclic carbene 1,3,4,5-tetramethylimidazol-2-ylidene (Me2 IMe) was also studied. In the case of 1Ph , the formation and consecutive decomposition of Me2 IMe=PtBu (8) was observed in solution. Hence, it was shown that 1Ph can react as a "masked phosphinidene". In the case of 2Ph , no reaction with Me2 IMe was observed. All isolated compounds were analysed by NMR and IR spectroscopy, mass spectrometry, elemental analysis and single-crystal X-ray diffraction.


Subject(s)
Bismuth , Organometallic Compounds , Bismuth/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL