Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 29(4): 525-542, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37187772

ABSTRACT

Meta-QTLs (MQTLs), ortho-MQTLs, and related candidate genes (CGs) for yield and its seven component traits evaluated under water deficit conditions were identified in wheat. For this purpose, a high density consensus map and 318 known QTLs were used for identification of 56 MQTLs. Confidence intervals (CIs) of the MQTLs were narrower (0.7-21 cM; mean = 5.95 cM) than the CIs of the known QTLs (0.4-66.6 cM; mean = 12.72 cM). Forty-seven MQTLs were co-located with marker trait associations reported in previous genome-wide association studies. Nine selected MQTLs were declared as 'breeders MQTLs' for use in marker-assisted breeding (MAB). Utilizing known MQTLs and synteny/collinearity among wheat, rice and maize, 12 ortho-MQTLs were also identified. A total of 1497 CGs underlying MQTLs were also identified, which were subjected to in-silico expression analysis, leading to identification of 64 differentially expressed CGs (DECGs) under normal and water deficit conditions. These DECGs encoded a variety of proteins, including the following: zinc finger, cytochrome P450, AP2/ERF domain-containing proteins, plant peroxidase, glycosyl transferase, glycoside hydrolase. The expression of 12 CGs at seedling stage (3 h stress) was validated using qRT-PCR in two wheat genotypes, namely Excalibur (drought tolerant) and PBW343 (drought sensitive). Nine of the 12 CGs were up-regulated and three down-regulated in Excalibur. The results of the present study should prove useful for MAB, for fine mapping of promising MQTLs and for cloning of genes across the three cereals studied. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01301-z.

2.
Physiol Mol Biol Plants ; 27(12): 2767-2786, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35035135

ABSTRACT

A meta-analysis of QTLs associated with the traits contributing to salinity tolerance was undertaken in wheat to detect consensus and robust meta-QTLs (MQTLs) using 844 known QTLs retrieved from 26 earlier studies. A consensus map with a total length of 4621.56 cM including 7710 markers was constructed using 21 individual linkage maps and three previously published integrated genetic maps. Out of 844 QTLs, 571 QTLs were projected on the consensus map which gave origin to 100 MQTLs. Interestingly, 49 MQTLs were co-located with marker-trait associations reported in wheat genome-wide association studies for the traits contributing to salinity stress tolerance. Five potential MQTLs associated with the major salinity-responsive traits were also identified to be utilized in the breeding programme. In the resulted MQTLs, the average confidence interval (CI, 3.58 cM) was reduced up to 4.16 folds compared to the mean CI of the initial QTLs. Furthermore, as many as 617 gene models including 81 most likely candidate genes (CGs) were identified in the high confidence MQTL regions. These most likely CGs encoded proteins mainly belonging to the following families: B-box-type zinc finger, cytochrome P450 protein, pentatricopeptide repeat, phospholipid/glycerol acyltransferase, F-box protein, small auxin-up RNA, UDP-glucosyltransferase, glutathione S-transferase protein, etc. In addition, ortho-MQTL analysis based on synteny among wheat, rice and barley was also performed which permitted the identification of six ortho-MQTLs among these three cereals. This meta-analysis defines a genome-wide landscape on the most stable and consistent loci associated with reliable molecular markers and candidate genes for salinity tolerance in wheat. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01112-0.

3.
Mol Breed ; 41(11): 69, 2021 Nov.
Article in English | MEDLINE | ID: mdl-37309361

ABSTRACT

Meta-QTL analysis for thermotolerance in wheat was conducted to identify robust meta-QTLs (MQTLs). In this study, 441 QTLs related to 31 heat-responsive traits were projected on the consensus map with 50,310 markers. This exercise resulted in the identification of 85 MQTLs with confidence interval (CI) ranging from 0.11 to 34.9 cM with an average of 5.6 cM. This amounted to a 2.96-fold reduction relative to the mean CI (16.5 cM) of the QTLs used. Seventy-seven (77) of these MQTLs were also compared and verified with the results of recent genome-wide association studies (GWAS). The 85 MQTLs included seven MQTLs that are particularly useful for breeding purposes (we called them breeders' MQTLs). Seven ortho-MQTLs between wheat and rice genomes were also identified using synteny and collinearity. The MQTLs were used for the identification of 1,704 candidate genes (CGs). In silico expression analysis of these CGs permitted identification of 182 differentially expressed genes (DEGs), which included 36 high confidence CGs with known functions previously reported to be important for thermotolerance. These high confidence CGs encoded proteins belonging to the following families: protein kinase, WD40 repeat, glycosyltransferase, ribosomal protein, SNARE associated Golgi protein, GDSL lipase/esterase, SANT/Myb domain, K homology domain, etc. Thus, the present study resulted in the identification of MQTLs (including breeders' MQTLs), ortho-MQTLs, and underlying CGs, which could prove useful not only for molecular breeding for the development of thermotolerant wheat cultivars but also for future studies focused on understanding the molecular basis of thermotolerance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01264-7.

SELECTION OF CITATIONS
SEARCH DETAIL