Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1301791, 2023.
Article in English | MEDLINE | ID: mdl-38126020

ABSTRACT

The application of mycorrhizal fungi as a bioaugmentation technology for phytoremediation of heavy metal (HM) contaminated soil has attracted widespread attention. In order to explore whether the adaptation of Pinus massoniana (P. massoniana) to metal polluted soil depends on the metal adaptation potential of their associated ectomycorrhizal fungi (ECMF), we evaluated the cadmium (Cd) tolerance of 10 ecotypes of Cenococcum geophilum (C. geophilum) through a membership function method, and P. massoniana seedlings were not (NM) or inoculated by Cd non-tolerant type (JaCg144), low-tolerant (JaCg32, JaCg151) and high-tolerant (JaCg205) isolates of C. geophilum were exposed to 0 and 100 mg·kg-1 for 3 months. The result showed that, each ecotype of C. geophilum significantly promoted the growth, photosynthesis and chlorophyll content, proline (Pro) content and the activity of peroxidase (POD) of P. massoniana seedlings, and decreased malonaldehyde (MDA) content and catalase (CAT) and superoxide dismutase (SOD) activity. The comprehensive evaluation D value of the tolerance to Cd stress showed that the order of the displaced Cd resistance of the four ecotypic mycorrhizal P. massoniana was: JaCg144 > JaCg151 > JaCg32 > JaCg205. Pearson correlation analysis showed that the Sig. value of the comprehensive evaluation (D) values of the strains and mycorrhizal seedlings was 0.077 > 0.05, indicating that the Cd tolerance of the the C. geophilum isolates did not affect its regulatory effect on the Cd tolerance of the host plant. JaCg144 and JaCg151 which are non-tolerant and low-tolerant ecotype significantly increased the Cd content in the shoots and roots by about 136.64-181.75% and 153.75-162.35%, indicating that JaCg144 and JaCg151 were able to effectively increase the enrichment of Cd from the soil to the root. Transcriptome results confirmed that C. geophilum increased the P. massoniana tolerance to Cd stress through promoting antioxidant enzyme activity, photosynthesis, and lipid and carbohydrate synthesis metabolism. The present study suggests that mental-non-tolerant ecotypes of ECMF can protect plants from Cd pollution, providing more feasible strategies for ectomycorrhizal-assisted phytoremediation.

2.
Genes (Basel) ; 13(9)2022 09 13.
Article in English | MEDLINE | ID: mdl-36140811

ABSTRACT

CCCH-type zinc finger proteins play an important role in multiple biotic and abiotic stresses. More and more reports about CCCH functions in plant development and stress responses have appeared over the past few years, focusing especially on tandem CCCH zinc finger proteins (TZFs). However, this has not been reported in Pinaceae. In this study, we identified 46 CCCH proteins, including 6 plant TZF members in Pinus massoniana, and performed bioinformatic analysis. According to RT-PCR analysis, we revealed the expression patterns of five RR-TZF genes under different abiotic stresses and hormone treatments. Meanwhile, tissue-specific expression analysis suggested that all genes were mainly expressed in needles. Additionally, RR-TZF genes showed transcriptional activation activity in yeast. The results in this study will be beneficial in improving the stress resistance of P. massoniana and facilitating further studies on the biological and molecular functions of CCCH zinc finger proteins.


Subject(s)
Gene Expression Regulation, Plant , Pinus , Hormones , Pinus/genetics , Pinus/metabolism , Plant Proteins/metabolism , Transcriptome , Zinc Fingers/genetics
3.
J Fungi (Basel) ; 9(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36675886

ABSTRACT

Analyzing the molecular and physiological processes that govern the uptake and transport of nitrogen (N) in plants is central to efforts to fully understand the optimization of plant N use and the changes in the N-use efficiency in relation to changes in atmospheric N deposition changes. Here, a field experiment was conducted using the ectomycorrhizal fungi (EMF), Pisolithus tinctorius (Pt) and Suillus grevillei (Sg). The effects of N deposition were investigated using concentrations of 0 kg·N·hm-2a-1 (N0), a normal N deposition of 30 kg·N·hm-2a-1 (N30), a moderate N deposition of 60 kg·N·hm-2a-1 (N60), and a severe N deposition of 90 kg·N·hm-2a-1 (N90), with the goal of examining how these factors impacted root activity, root absorbing area, NH4+ and NO3- uptake kinetics, and the expression of ammonium and nitrate transporter genes in Pinus massoniana seedlings under different levels of N deposition. These data revealed that EMF inoculation led to increased root dry weight, activity, and absorbing area. The NH4+ and NO3- uptake kinetics in seedlings conformed to the Michaelis-Menten equation, and uptake rates declined with increasing levels of N addition, with NH4+ uptake rates remaining higher than NO3- uptake rates for all tested concentrations. EMF inoculation was associated with higher Vmax values than were observed for non-mycorrhizal plants. Nitrogen addition resulted in the upregulation of genes in the AMT1 family and the downregulation of genes in the NRT family. EMF inoculation under the N60 and N90 treatment conditions resulted in the increased expression of each of both these gene families. NH4+ and NO3- uptake kinetics were also positively correlated with associated transporter gene expression in P. massoniana roots. Together, these data offer a theoretical foundation for EMF inoculation under conditions of increased N deposition associated with climate change in an effort to improve N absorption and transport rates through the regulation of key nitrogen transporter genes, thereby enhancing N utilization efficiency and promoting plant growth. Synopsis: EMF could enhance the efficiency of N utilization and promote the growth of Pinus massoniana under conditions of increased N deposition.

4.
Tree Physiol ; 42(2): 411-424, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34378055

ABSTRACT

Outbreaks of pine wood nematode (PWN; Bursaphelenchus xylophilus) represent a severe biotic epidemic for the Pinus massoniana in China. When invaded by the PWN, the resistant P. massoniana might secret abundant oleoresin terpenoid to form certain defensive fronts for survival. However, the regulatory mechanisms of this process remain unclear. Here, the geranyl diphosphate synthase (PmGPPS1) gene was identified from resistant P. massoniana. Tissue-specific expression patterns of PmGPPS1 at transcript and protein level in resistant P. massoniana were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. Functional characteristics analysis of PmGPPS1 was performed on transgenic Nicotiana benthamiana by overexpression, as genetic transformation of P. massoniana is, so far, not possible. In summary, we identified and functionally characterized PmGPPS1 from the resistant P. massoniana following PWN inoculation. Tissue-specific expression patterns and localization of PmGPPS1 indicated that it may play a positive role involved in the metabolic and defensive processes of oleoresin terpenes production in response to PWN attack. Furthermore, overexpression of PmGPPS1 may enhance the production of monoterpene, among which limonene reduced the survival of PWN in vitro. In addition, PmGPPS1 upregulated the expression level of key genes involved in mevalonic acid (MVA) pathway, the methylerythritol phosphate (MEP) pathway and gibberellins (GAs) biosynthesis to boost the growth and development of tobacco through a feedback regulation mechanism. Our results offered new insights into the pivotal role of the PmGPPS1 involved in terpene-based defense mechanisms responding to the PWN invasion in resistant P. massoniana and provided a new metabolic engineering scenario to improve monoterpene production in tobacco.


Subject(s)
Diterpenes , Nematoda , Pinus , Animals , Diphosphates , Diterpenes/metabolism , Monoterpenes/metabolism , Pinus/genetics , Pinus/metabolism , Plant Diseases/genetics
5.
Int J Mol Sci ; 22(20)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34681852

ABSTRACT

Pine wood nematode (PWN) causes serious diseases in conifers, especially pine species. To investigate the transcriptomic profiles of genes involved in pine-PWN interactions, two different pine species, namely, Pinus thunbergii and P. massoniana, were selected for this study. Weighted gene coexpression network analysis (WGCNA) was used to determine the relationship between changes in gene expression and the PWN population after PWN infection. PWN infection negatively affects the expression of most genes in pine trees, including plant defense-related genes such as genes related to plant hormone signal transduction, plant-pathogen interactions, and the MAPK signaling pathway in plants. However, the expression of chalcone synthase genes and their related genes were proportional to the changes in nematode populations, and chalcone synthase genes were dominant within the coexpression module enriched by genes highly correlated with the nematode population. Many genes that were closely related to chalcone synthase genes in the module were related to flavonoid biosynthesis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis. Pine trees could actively adjust their defense strategies in response to changes in the number of invasive PWNs, but the sustained expression of chalcone synthase genes should play an important role in the inhibition of PWN infection.


Subject(s)
Acyltransferases/genetics , Nematode Infections/genetics , Pinus/parasitology , Plant Diseases/genetics , Rhabditida , Animals , Disease Resistance , Gene Expression Regulation, Plant , Genes, Plant , Nematode Infections/enzymology , Pinus/enzymology , Pinus/genetics , Pinus/metabolism , Signal Transduction , Transcriptome
6.
Genes (Basel) ; 11(11)2020 11 23.
Article in English | MEDLINE | ID: mdl-33238446

ABSTRACT

Pinus massoniana Lamb, an economically important conifer tree, is widely distributed in China. WRKY transcription factors (TFs) play important roles in plant growth and development, biological and abiotic stress. Nevertheless, there is little information about the WRKY genes in P. massoniana. By searching for conserved WRKY motifs in transcriptomic RNA sequencing data for P. massoniana, 31 sequences were identified as WRKY TFs. Then, phylogenetic and conserved motif analyses of the WRKY family in P. massoniana, Pinus taeda and Arabidopsis thaliana were used to classify WRKY genes. The expression patterns of six PmWRKY genes from different groups were determined using real-time quantitative PCR for 2-year-old P. massoniana seedings grown in their natural environment and challenged by phytohormones (salicylic acid, methyl jasmonate, or ethephon), abiotic stress (H2O2) and mechanical damage stress. As a result, the 31 PmWRKY genes identified were divided into three major groups and several subgroups based on structural and phylogenetic features. PmWRKY genes are regulated in response to abiotic stress and phytohormone treatment and may participate in signaling to improve plant stress resistance. Some PmWRKY genes behaved as predicted based on their homology with A. thaliana WRKY genes, but others showed divergent behavior. This systematic analysis lays the foundation for further identification of WRKY gene functions to aid further exploration of the functions and regulatory mechanisms of PmWRKY genes in biological and abiotic stress in P. massoniana.


Subject(s)
Pinus/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Acetates/pharmacology , Amino Acid Motifs , Arabidopsis Proteins/genetics , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant , Multigene Family , Oxylipins/pharmacology , Phylogeny , Pinus/drug effects , Pinus/physiology , Plant Proteins/chemistry , Plant Proteins/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Transcription Factors/chemistry , Transcription Factors/metabolism
7.
PeerJ ; 8: e9935, 2020.
Article in English | MEDLINE | ID: mdl-32995090

ABSTRACT

BACKGROUND: Trace elements are essential for the growth and survival of plants, and their concentrations and distributions in plants are effective reflections of ecological adaptation strategies. However, this aspect has seldom been addressed. METHOD: Changes in the leaf and branch trace elements of Pinus massoniana Lamb, induced by seasonal dynamics and in response to a 3-yr 100% rainfall exclusion, were evaluated. RESULTS: The results showed that the concentrations of Fe, Cu, Zn, Cd, Ni and Cr in leaves of P. massoniana in the control group had high seasonal resolution. There were three groups according to their patterns over the growing season: (1) nutrient elements (Cu, Zn, Ni and Cd), which continuously decreased in concentration during the growing season, with the highest concentration in spring and the lowest in autumn; (2) accumulating element (Cr), which increased in concentration from spring to autumn; and (3) indifferent element (Fe), which increased in concentration from spring to summer and decreased in concentration from summer to autumn. The concentrations of trace elements in leaves and branches showed no significant differences with mild drought stress, except for Fe and Cr in leaves and Cr in branches, which significantly increased (p < 0.05) under the result of self-selection under mild drought stress. Therefore, the resultant seasonal and drought effects on trace element cycling in P. massoniana could provide theoretical support to respond to future climate change.

SELECTION OF CITATIONS
SEARCH DETAIL