Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Purinergic Signal ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922475

ABSTRACT

Although multiple purinergic receptors mediate the analgesic effects of acupuncture, it remains unclear whether there is mutual interaction between purinergic receptors to jointly mediate the electroacupuncture inhibition of peripheral sensitization in visceral pain. Visceral hypersensitivity was induced by intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rat. The antinociception effect of electroacupuncture on visceral pain was evaluated by morphology, behaviors, neuroelectrophysiology and molecular biology techniques. After labeling the colon-related primary sensory neurons with neural retrograde tracer and employing neuropharmacology, neuroelectrophysiology, and molecular biotechnology, the mechanisms of P2X7R, P2Y1R, and P2X3R in colon-related dorsal root ganglion (DRG) neurons alleviating visceral hypersensitivity of irritable bowel syndrome (IBS) by electroacupuncture at Zusanli and Sanyinjiao acupoints.were elucidated from the perspective of peripheral sensitization. Electroacupuncture significantly inhibited TNBS-induced colonic hypersensitivity in rats with IBS, and Satellite Glial Cells (SGCs) in DRG were found to be involved in electroacupuncture-mediated regulation of the electrophysiological properties of neurons. P2X7R was found to play a pain-inducing role in IBS visceral hypersensitivity by affecting P2X3R, and electroacupuncture exerted an analgesic effect by inhibiting P2X7R activation. P2Y1R was found to play an analgesic role in the process of visceral pain, mediating electroacupuncture to relieve visceral hypersensitivity. P2Y1R relieved visceral pain by inhibiting P2X3R in neurons associated with nociception, with P2X7R identified as upstream of P2Y1R up-regulation by electroacupuncture. Our study suggests that the P2X7R → P2Y1R → P2X3R inhibitory pathway in DRG mediates the inhibition of peripheral sensitization by electroacupuncture in rats with IBS visceral hypersensitivity.

2.
BMC Gastroenterol ; 24(1): 23, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191294

ABSTRACT

This study was designed to explore the expression changes of P2Y1 receptors in the distal colonic myenteric layer of rats. An opioid induced constipation(OIC) rat model was generated by intraperitoneal (i.p) injection of loperamide. At 7 days post-treatment, the model rats were assessed by calculating the fecal water content and the gastrointestinal transit ratio. The immunofluorescence (IF)-based histochemical study was used to observe the distribution of P2Y1 receptors in the distal colonic myenteric plexus. Western blotting (WB) was performed to evaluate the expression changes of P2Y1 proteins in the myenteric layer, and the electrophysiological approaches were carried out to determine the regulatory roles of P2Y1 receptors on distal colonic motor function. IF showed that P2Y1 receptors are co-expressed MOR in the enteric nerve cells of the distal colonic myenteric plexus. Moreover, the WB revealed that the protein levels of P2Y1 were significantly decreased in the distal colonic myenteric layer of OIC rats. In vitro tension experiments exhibited that the P2Y1 receptor antagonist MRS2500 enhanced the spontaneous contraction amplitude, adding EM2 and ß-FNA did not have any effect on MRS2500. Therefore, P2Y1 receptor expression could be associated with the occurrence of OIC in this rat model and the regulation of colonic motility by MOR may be related to the release of purine neurotransmitters such as ATP in the colonic nervous system.


Subject(s)
Myenteric Plexus , Opioid-Induced Constipation , Animals , Rats , Analgesics, Opioid/adverse effects , Constipation/chemically induced , Blotting, Western
3.
Br J Pharmacol ; 181(4): 564-579, 2024 02.
Article in English | MEDLINE | ID: mdl-36694432

ABSTRACT

BACKGROUND AND PURPOSE: Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH: Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS: Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS: Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Subject(s)
Blood Platelets , NAD , Humans , Molecular Docking Simulation , NAD/metabolism , Adenosine Diphosphate/pharmacology , Adenosine Diphosphate/metabolism , Platelet Aggregation , Inflammation/metabolism , Fibrinogen/metabolism , Fibrinogen/pharmacology , Adenosine Diphosphate Ribose/metabolism , Adenosine Diphosphate Ribose/pharmacology , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2Y12/metabolism
4.
Mol Neurobiol ; 61(2): 1002-1021, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37676390

ABSTRACT

There are no effective treatments for post-stroke glial scar formation, which inhibits axonal outgrowth and functional recovery after stroke. We investigated whether astrocytic extracellular vesicles (AEVs) regulated by microglia modulate glial scars and improve stroke recovery. We found that peri-infarct glial scars comprised reactive astrocytes with proliferating C3d and decreased S100A10 expression in chronic stroke. In cultured astrocytes, microglia-conditioned media and treatment with P2Y1 receptor antagonists increased and reduced the area of S100A10- and C3d-expressing reactive astrocytes, respectively, by suppressing mitogen-activated protein kinase/nuclear factor-κß (NF-κB)/tumor necrosis factor-α (TNF-α)/interleukin-1ß signaling after oxygen-glucose deprivation. Intracerebral administrations of AEVs enriched miR-146a-5p, downregulated NF-κB, and suppressed TNF-α expressions, by transforming reactive astrocytes to those with S100A10 preponderance, causing functional recovery in rats subjected to middle cerebral artery occlusion. Modulating neuroinflammation in post-stroke glial scars could permit axonal outgrowth, thus providing a basis for stroke recovery with neuroprotective AEVs.


Subject(s)
Extracellular Vesicles , Stroke , Rats , Animals , Microglia/metabolism , NF-kappa B/metabolism , Astrocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Gliosis/pathology , Stroke/pathology , Extracellular Vesicles/metabolism
5.
Arch Biochem Biophys ; 751: 109844, 2024 01.
Article in English | MEDLINE | ID: mdl-38043889

ABSTRACT

The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.


Subject(s)
Muscle, Skeletal , Signal Transduction , Animals , Rats , Adenosine Triphosphate/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2Y2/genetics , Receptors, Purinergic P2Y2/metabolism
6.
Br J Pharmacol ; 181(4): 580-592, 2024 02.
Article in English | MEDLINE | ID: mdl-37442808

ABSTRACT

Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cß (PLCß) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Subject(s)
Blood Platelets , Platelet Aggregation , Humans , Adenosine Diphosphate/metabolism , Blood Platelets/physiology , Signal Transduction , Inflammation/metabolism , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2Y12/metabolism , Platelet Activation
7.
Int J Biol Sci ; 19(14): 4360-4375, 2023.
Article in English | MEDLINE | ID: mdl-37781034

ABSTRACT

Delayed intestinal mucosal healing is one of the pathogenic bases for the recurrence of inflammatory bowel disease (IBD), but how the IBD inflammatory environment impedes intestinal mucosa repair remains unclear. Adenosine diphosphate (ADP) is an endogenous ligand of P2Y1R that is highly produced at sites of inflammation. We herein identify a novel role of ADP to directly facilitate inflammation-induced epithelial permeability, delay wound healing, and disrupt tight junction integrity, and we found that P2Y1R, a receptor preferentially activated by ADP, was significantly upregulated in the colonic mucosa of ulcerative colitis (UC) patients and in colonic epithelial cells of colitis mice. Inhibition of P2Y1R significantly increased the epithelial permeability, decreased the wound healing capacity, and impaired the tight junction integrity in TNF-α-challenged Caco-2 cells. In parallel, the same effects in promoting intestinal mucosa repair were observed in DSS-induced colitis in P2Y1R-/- mice. Mechanistic investigation revealed that P2Y1R inhibition facilitated epithelial AMP-activated protein kinase (AMPK) phosphorylation and gut microbiota homeostasis reconstruction. Taken together, these findings highlight that P2Y1R activation plays an important role in impeding intestinal mucosa repair during colitis, and that P2Y1R is an attractive target for the therapy of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Caco-2 Cells , Colitis/chemically induced , Colitis/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Adenosine Diphosphate/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL
8.
Cells ; 12(13)2023 06 22.
Article in English | MEDLINE | ID: mdl-37443726

ABSTRACT

In the cerebral cortex, glutamate activates NMDA receptors (NMDARs), localized in noradrenergic neurons, inducing noradrenaline release that may have a permissive effect on glutamatergic transmission, and therefore, on the modulation of long-term plasticity. ATP is co-released with noradrenaline, and with its metabolites (ADP and adenosine) is involved in the purinergic modulation of electrically-evoked noradrenaline release. However, it is not known if noradrenaline release evoked by activation of NMDARs is also under purinergic modulation. The present study aimed to investigate and to characterize the purinergic modulation of noradrenaline release evoked by NMDARs. Stimulation of rat cortical slices with 30 µM NMDA increased noradrenaline release, which was inhibited by ATP upon metabolization into ADP and adenosine and by the selective agonists of A1 and A2A receptors, CPA and CGS2680, respectively. It was also inhibited by UTP and UDP, which are mainly released under pathophysiological situations. Characterization of the effects mediated by these compounds indicated the involvement of P2Y1, P2Y6, A1 and A2A receptors. It is concluded that, in the rat brain cortex, NMDA-evoked noradrenaline release is modulated by several purinergic receptors that may represent a relevant mechanism to regulate the permissive effect of noradrenaline on NMDA-induced neuroplasticity.


Subject(s)
N-Methylaspartate , Norepinephrine , Rats , Animals , Norepinephrine/pharmacology , Norepinephrine/metabolism , N-Methylaspartate/pharmacology , N-Methylaspartate/metabolism , Rats, Wistar , Adenosine/metabolism , Cerebral Cortex/metabolism , Adenosine Triphosphate/metabolism , Adenosine Diphosphate/pharmacology , Adenosine Diphosphate/metabolism
9.
Cell Signal ; 109: 110805, 2023 09.
Article in English | MEDLINE | ID: mdl-37437828

ABSTRACT

Genetically encoded Ca2+ indicators have become widely used in cell signalling studies as they offer advantages over cell-loaded dye indicators in enabling specific cellular or subcellular targeting. Comparing responses from dye and protein-based indicators may provide information about indicator properties and cell physiology, but side-by-side recordings in cells are scarce. In this study, we compared cytoplasmic Ca2+ concentration ([Ca2+]i) changes in insulin-secreting ß-cells recorded with commonly used dyes and indicators based on circularly permuted fluorescent proteins. Total internal reflection fluorescence (TIRF) imaging of K+ depolarization-triggered submembrane [Ca2+]i increases showed that the dyes Fluo-4 and Fluo-5F mainly reported stable [Ca2+]i elevations, whereas the proteins R-GECO1 and GCaMP5G more often reported distinct [Ca2+]i spikes from an elevated level. [Ca2+]i spiking occurred also in glucose-stimulated cells. The spikes reflected Ca2+ release from the endoplasmic reticulum, triggered by autocrine activation of purinergic receptors after exocytotic release of ATP and/or ADP, and the spikes were consequently prevented by SERCA inhibition or P2Y1-receptor antagonism. Widefield imaging, which monitors the entire cytoplasm, increased the spike detection by the Ca2+ dyes. The indicator-dependent response patterns were unrelated to Ca2+ binding affinity, buffering and mobility, and probably reflects the much slower dissociation kinetics of protein compared to dye indicators. Ca2+ dyes thus report signalling within the submembrane space excited by TIRF illumination, whereas the protein indicators also catch Ca2+ events originating outside this volume. The study highlights that voltage-dependent Ca2+ entry in ß-cells is tightly linked to local intracellular Ca2+ release mediated via an autocrine route that may be more important than previously reported direct Ca2+ effects on phospholipase C or on intracellular channels mediating calcium-induced calcium release.


Subject(s)
Calcium , Insulin-Secreting Cells , Calcium/metabolism , Insulin-Secreting Cells/metabolism , Signal Transduction , Endoplasmic Reticulum/metabolism , Coloring Agents/metabolism , Coloring Agents/pharmacology , Calcium Signaling , Adenosine Triphosphate/metabolism
10.
Cells ; 12(14)2023 07 13.
Article in English | MEDLINE | ID: mdl-37508508

ABSTRACT

Astrocytes are critical players in brain health and disease. Brain pathologies and lesions are usually accompanied by astroglial alterations known as reactive astrogliosis. Sphingosine 1-phosphate lyase (SGPL1) catalysis, the final step in sphingolipid catabolism, irreversibly cleaves its substrate sphingosine 1-phosphate (S1P). We have shown that neural ablation of SGPL1 causes accumulation of S1P and hence neuronal damage, cognitive deficits, as well as microglial activation. Moreover, the S1P/S1P-receptor signaling axis enhances ATP production in SGPL1-deficient astrocytes. Using immunohistochemical methods as well as RNA Seq and CUT&Tag we show how S1P signaling causes activation of the astrocytic purinoreceptor P2Y1 (P2Y1R). With specific pharmacological agonists and antagonists, we uncover the P2Y1R as the key player in S1P-induced astrogliosis, and DDX3X mediated the activation of the NLRP3 inflammasome, including caspase-1 and henceforward generation of interleukin-1ß (IL-1ß) and of other proinflammatory cytokines. Our results provide a novel route connecting S1P metabolism and signaling with astrogliosis and the activation of the NLRP3 inflammasome, a central player in neuroinflammation, known to be crucial for the pathogenesis of numerous brain illnesses. Thus, our study opens the door for new therapeutic strategies surrounding S1P metabolism and signaling in the brain.


Subject(s)
Inflammasomes , Lyases , Brain , Gliosis , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice
11.
Purinergic Signal ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410223

ABSTRACT

The NLRP3-inflammasome is a cytosolic multiprotein complex that triggers an inflammatory response to certain danger signals. Recently adenosine diphosphate (ADP) was found to activate the NLRP3-inflammasome in murine macrophages via the P2Y1 receptor. Blockade of this signaling pathway reduced disease severity in a murine colitis-model. However, the role of the ADP/P2Y1-axis has not yet been studied in humans. This present study confirmed ADP-dependent NLRP3-inflammasome activation in murine macrophages, but found no evidence for a role of ADP in inflammasome activation in humans. We investigated the THP1 cell line as well as primary monocytes and further looked at macrophages. Although all cells express the three human ADP-receptors P2Y1, P2Y12 and P2Y13, independent of priming, neither increased ASC-speck formation could be detected with flow cytometry nor additional IL-1ß release be found in the culture supernatant of ADP stimulated cells. We now show for the first time that the responsiveness of monocytes and macrophages to ADP as well as the regulation of its purinergic receptors is very much dependent on the species. Therefore the signaling pathway found to contribute to colitis in mice is likely not applicable to humans.

12.
J Neurochem ; 2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36869630

ABSTRACT

Although activation of astrocytes is critical in developing neuropathic pain (NP) following nerve injury, the underlying mechanisms of NP and therapeutic management for NP are still vague. Importantly, the decreases in the levels of astrocytic glutamate transporter-1 (GLT-1) in the spinal dorsal horn result in enhanced excitatory transmission and cause persistent pain. P2Y1 purinergic receptor (P2Y1R) has been shown to enhance many inflammatory processes. The up-regulated expression of astrocytic P2Y1R is crucial to participate in pain transduction under conditions of nerve injury and peripheral inflammation considering that P2Y1R is potentially involved in glutamate release and synaptic transmission. This study indicates that the expression of P2Y1R in the spinal cord was increased accompanied by the activation of A1 phenotype astrocytes in the rat model of spinal nerve ligation (SNL). Astrocyte-specific knockdown of P2Y1R alleviated SNL-induced nociceptive responses and mitigated A1 reactive astrocytes, which subsequently increased GLT-1 expression. Conversely, in naïve rats, P2Y1R over-expression induced a canonical NP-like phenotype and spontaneous hypernociceptive responses and increased the concentration of glutamate in the spinal dorsal horn. Besides, our in vitro data showed that the proinflammatory cytokine tumour necrosis factor-alpha contributes to A1/A2 astrocyte reactivity and Ca2+ -dependent release of glutamate. Conclusively, our results provide novel insights that as a significant regulator of astrocytic A1/A2 polarization and neuroinflammation, P2Y1R may represent a potential target for the treatment of SNL-induced NP.

13.
J Thromb Haemost ; 21(7): 1891-1902, 2023 07.
Article in English | MEDLINE | ID: mdl-36958516

ABSTRACT

BACKGROUND: The hemostatic plug formation at sites of vascular injury is strongly dependent on rapid platelet activation and integrin-mediated adhesion and aggregation. However, to prevent thrombotic complications, platelet aggregate formation must be a self-limiting process. The second-wave mediator adenosine diphosphate (ADP) activates platelets via Gq-coupled P2Y1 and Gi-coupled P2Y12 receptors. After ADP exposure, the P2Y1 receptor undergoes rapid phosphorylation-induced desensitization, a negative feedback mechanism believed to be critical for limiting thrombus growth. OBJECTIVE: The objective of this study was to examine the role of rapid P2Y1 receptor desensitization on platelet function and thrombus formation in vivo. METHODS: We analyzed a novel knock-in mouse strain expressing a P2Y1 receptor variant that cannot be phosphorylated beyond residue 340 (P2Y1340-0P), thereby preventing the desensitization of the receptor. RESULTS: P2Y1340-0P mice followed a Mendelian inheritance pattern, and peripheral platelet counts were comparable between P2Y1340-0P/340-0P and control mice. In vitro, P2Y1340-0P/340-0P platelets were hyperreactive to ADP, showed a robust activation response to the P2Y1 receptor-selective agonist, MRS2365, and did not desensitize in response to repeated ADP challenge. We observed increased calcium mobilization, protein kinase C substrate phosphorylation, alpha granule release, activation of the small GTPase Rap1, and integrin inside-out activation/aggregation. This hyperreactivity, however, did not lead to increased platelet adhesion or excessive plug formation under physiological shear conditions. CONCLUSION: Our studies demonstrate that receptor phosphorylation at the C-terminus is critical for P2Y1 receptor desensitization in platelets and that impaired desensitization leads to increased P2Y1 receptor signaling in vitro. Surprisingly, desensitization of the P2Y1 receptor is not required for limiting platelet adhesion/aggregation at sites of vascular injury, likely because ADP is degraded quickly or washed away in the bloodstream.


Subject(s)
Thrombosis , Vascular System Injuries , Mice , Animals , Platelet Aggregation , Blood Platelets/metabolism , Hemostasis , Thrombosis/genetics , Thrombosis/prevention & control , Thrombosis/metabolism , Adenosine Diphosphate/pharmacology , Integrins/metabolism , Receptors, Purinergic P2Y1/genetics , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2Y12/genetics , Receptors, Purinergic P2Y12/metabolism
14.
Res Pract Thromb Haemost ; 7(1): 100004, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36970741

ABSTRACT

Background: Blood platelet Ca2+ stores are regulated by 2 Ca2+-ATPases (SERCA2b and SERCA3). On thrombin stimulation, nicotinic acid adenosine dinucleotide phosphate mobilizes SERCA3-dependent stores, inducing early adenosine 5'-diphosphate (ADP) secretion, potentiating later SERCA2b-dependent secretion. Objectives: The aim of this study was to identify which ADP P2 purinergic receptor (P2Y1 and/or P2Y12) is(are) involved in the amplification of platelet secretion dependent on the SERCA3-dependent Ca2+ mobilization pathway (SERCA3 stores mobilization) as triggered by low concentration of thrombin. Methods: The study used the pharmacologic antagonists MRS2719 and AR-C69931MX, of the P2Y1 and P2Y12, respectively, as well as Serca3 -/- mice and mice exhibiting platelet lineage-specific inactivation of the P2Y1 or P2Y12 genes. Results: We found that in mouse platelets, pharmacological blockade or gene inactivation of P2Y12 but not of P2Y1 led to a marked inhibition of ADP secretion after platelet stimulation with low concentration of thrombin. Likewise, in human platelets, pharmacological inhibition of P2Y12 but not of P2Y1 alters amplification of thrombin-elicited secretion through SERCA2b stores mobilization. Finally, we show that early SERCA3 stores secretion of ADP is a dense granule secretion, based on parallel adenosine triphosphate and serotonin early secretion. Furthermore, early secretion involves a single granule, based on the amount of adenosine triphosphate released. Conclusion: Altogether, these results show that at low concentrations of thrombin, SERCA3- and SERCA2b-dependent Ca2+ mobilization pathways cross-talk via ADP and activation of the P2Y12, and not the P2Y1 ADP receptor. The relevance in hemostasis of the coupling of the SERCA3 and the SERCA2b pathways is reviewed.

15.
BMC Cardiovasc Disord ; 23(1): 41, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36681816

ABSTRACT

BACKGROUND: The objective of this study was to investigate the relationship between P2Y1 and P2Y12 genotypes and the risk of acute myocardial infarction (AMI) in the Quanzhou population and to determine associations between P2Y1 and P2Y12 genotypes and ADP-induced platelet aggregation in this population. METHODS: All subjects were screened for P2Y1 (c.1622A > G) and P2Y12 (H1/H2, c.34C > T) polymorphisms by direct DNA sequencing. The maximal platelet aggregation rate (MAR) in AMI patients (n = 61) and healthy control subjects (n = 50) was measured by a PL-12 platelet function analyzer, and adenosine diphosphate (ADP) (5 µmol/L) was used as an agonist. RESULTS: The haploid H2 allele in the P2Y12 gene was more frequent in patients with AMI than in control subjects (OR 1.887, P = 0.005). The P2Y12 H2 haplotype was significantly associated with AMI in the codominant (P = 0.008), dominant (OR 2.103, P = 0.003), and overdominant models (OR 2.133, P = 0.003). After adjusting for potential confounders, H2 haplotype carriers had a 2.132-fold increased risk for AMI (OR 2.132, P = 0.012) compared with noncarriers. Moreover, we observed that the ADP-induced MAR in the carriers of the H2 haplotype from the control group was somewhat higher than that in noncarriers of this group (P = 0.020). However, we failed to demonstrate that the P2Y1 H1/H2 polymorphism affected ADP-induced MAR in AMI patients. Additionally, P2Y1 c.1622A > and P2Y12 c.34C > T polymorphisms were not associated with the risk of AMI or ADP-induced MAR in either group. CONCLUSIONS: Therefore, our results suggest that the P2Y12 H2 haplotype was associated with a higher risk of AMI, while its effect on increased ADP-induced platelet aggregation remains to be investigated. Thus, the P2Y12 H2 haplotype may be a potential marker for AMI.


Subject(s)
Myocardial Infarction , Platelet Aggregation , Humans , Adenosine Diphosphate/pharmacology , Polymorphism, Genetic , Platelet Aggregation Inhibitors/pharmacology , Myocardial Infarction/diagnosis , Myocardial Infarction/genetics , Blood Platelets
16.
Exp Ther Med ; 25(1): 67, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36605532

ABSTRACT

The aim of the present study was to explore the expression changes of P2Y purinergic receptor 1 (P2Y1) in the distal colonic submucosa of opioid-induced constipation (OIC) rats and its association with the occurrence of OIC, an OIC rat model was generated by intraperitoneal injection of loperamide hydrochloride, a selective agonist of µ-opioid receptors (MORs). At 7 days post-treatment, the model was assessed by analyzing stool scores and calculating the gastrointestinal (GI) transit ratio of rats. The distribution of P2Y1-expressing neurons in the colonic submucosal plexus was demonstrated by immunofluorescence (IF). Western blotting was performed to evaluate the expression changes of MOR, P2Y1 and ATP synthase subunit ß (ATPB) proteins in the colonic submucosa, while reverse transcription-quantitative PCR (RT-qPCR) analysis was performed to determine the relative mRNA expression of MOR and P2Y1. After 7 days, the feces of OIC rats exhibited an appearance of sausage-shaped pieces and both the stool weight and GI transit ratio of OIC rats were significantly decreased. IF revealed co-expression of P2Y1 and calbindin and MOR and ATPB in the nerve cells of the distal colonic submucosal plexus. Moreover, RT-qPCR analysis showed that the MOR mRNA levels were significantly increased in the distal colonic submucosa of OIC rats, while mRNA levels of P2Y1 were decreased. WB showed that in the distal colonic submucosa of OIC rats, MOR protein expression was increased, whereas that of P2Y1 was significantly decreased. GI transit ratio analysis suggested that the P2Y agonist ATP significantly relieved constipation symptoms in rats, while the P2Y inhibitor MRS2179 aggravated these symptoms. Finally, P2Y1 expression change was shown to be associated with the occurrence of OIC, while expression of MOR and P2Y1 was associated with OIC development in rats.

17.
Purinergic Signal ; 19(1): 305-313, 2023 03.
Article in English | MEDLINE | ID: mdl-35902482

ABSTRACT

Muscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem cells' (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration. Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration. Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse. In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive. This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs' activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.


Subject(s)
Muscle, Skeletal , Muscular Diseases , Animals , Humans , Mice , Cell Differentiation , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Regeneration/physiology , Signal Transduction , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2Y2/metabolism
18.
Neuropharmacology ; 223: 109311, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36328064

ABSTRACT

Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.


Subject(s)
Adenosine Triphosphate , Astrocytes , Adenosine Triphosphate/metabolism , Astrocytes/metabolism , Synaptic Transmission/physiology , Signal Transduction/physiology , Neurons/metabolism
19.
Purinergic Signal ; 19(1): 55-68, 2023 03.
Article in English | MEDLINE | ID: mdl-35094240

ABSTRACT

Depression is a common neuropsychiatric disorder with high incidence and disability. Electroacupuncture (EA) is effective in the treatment of depression. However, the underlying mechanisms are not fully understood. Social isolation stress during post-weaning period can impair purinergic signaling in the brain of rodents and has emerged as a major risk factor for depression. The purpose of this study was to investigate the involvement of P2Y1 receptor (P2Y1R) in the antidepressant-like effects of EA. In this study, C57BL/6 mice were randomly assigned to group-housed (GH) or social isolated (SI) groups at post-natal day 21. After 6 weeks of social isolation, EA was performed on acupoints "Bai-hui" (GV20) and "Yin-tang" (GV29), or non-acupoints for 4 weeks. The SI mice received either intracerebroventricular injection of a selective P2Y1R agonist, MRS2365 (1 nmol); or a selective P2Y1R antagonist, MRS2179 (2 µmol), before and after EA. We found that SI mice exhibited depression-like behaviors accompanied with anxiety-like behaviors. The expressions of P2Y1R were well co-localized with GFAP-positive astrocytes and increased in the prefrontal cortex and hippocampus of SI mice. After treated with MRS2179, the depression-like behaviors of SI mice were attenuated, but not with MRS2365. Meanwhile, we found that EA could attenuate social isolation caused depression- and anxiety-like behaviors, and inhibited the up-regulation of P2Y1R in the prefrontal cortex and hippocampus of SI mice. Notably, the positive effects of EA on depression-like behaviors of SI mice could be reversed by MRS2365, while MRS2365 had no effect on the anxiolytic-like effects of EA. Therefore, we provide new evidence that EA could ameliorate depression- and anxiety-like behaviors in social isolation stress mice, and P2Y1R was involved in the antidepressant-like effects of EA.


Subject(s)
Electroacupuncture , Mice , Animals , Receptors, Purinergic P2Y1/metabolism , Mice, Inbred C57BL , Antidepressive Agents , Hippocampus/metabolism , Receptors, Purinergic/metabolism , Social Isolation
20.
Am J Blood Res ; 13(6): 168-188, 2023.
Article in English | MEDLINE | ID: mdl-38223314

ABSTRACT

Cardiovascular disease (CVD) is a major cause of death worldwide. Although there are many variables that contribute to the development of this disease, it is predominantly the activity of platelets that provides the mechanisms by which this disease prevails. While there are numerous platelet receptors expressed on the surface of platelets, it is largely the consensus that there are 10 main platelet receptors that contribute to a majority of platelet function. Understanding these key platelet receptors is vitally important for patients suffering from myocardial infarction, CVD, and many other diseases that arise due to overactivation or mutations of these receptors. The goal of this manuscript is to review the main platelet receptors that contribute most to platelet activity.

SELECTION OF CITATIONS
SEARCH DETAIL