Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 141: 112778, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173402

ABSTRACT

BACKGROUND: Renal denervation (RDN) has been proved to relieve cardiac hypertrophy; however, its detailed mechanisms remain obscure. This study investigated the detailed protective mechanisms of RDN against cardiac hypertrophy during hypertensive heart failure (HF). METHODS: Male 5-month-old spontaneously hypertension (SHR) rats were used in a HF rat model, and male Wistar-Kyoto (WKY) rats of the same age were used as the baseline control. Myocardial hypertrophy and fibrosis were evaluated by hematoxylin-eosin (HE) staining and Masson staining. The expression of target molecule was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, immunohistochemical and immunofluorescence, respectively. Cardiomyocyte hypertrophy was induced by norepinephrine (NE) in H9c2 cells in vitro and evaluated by brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP), ß-myosin heavy chain (ß-MHC), and α-myosin heavy chain (α-MHC) levels. Oxidative stress was determined by malondialdehyde (MDA) level, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) enzyme activities. Mitochondrial function was measured by mitochondrial membrane potential, adenosine triphosphate (ATP) production, mitochondrial DNA (mtDNA) number, and mitochondrial complex I-IV activities. Molecular mechanism was assessed by dual luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS: RDN decreased sympathetic nerve activity, attenuated myocardial hypertrophy and fibrosis, and improved cardiac function in the rat model of HF. In addition, RDN ameliorated mitochondrial oxidative stress in myocardial tissues as evidenced by reducing MDA and mitochondrial reactive oxygen species (ROS) levels, and enhancing SOD and GSH-Px activities. Moreover, phosphofurin acid cluster sorting protein 2 (PACS-2) and broad-complex, tramtrak and bric à brac (BTB) domain and cap'n'collar (CNC) homolog 1 (BACH1) were down-regulated by RDN. In NE-stimulated H9c2 cells, PACS-2 and BACH1 levels were markedly elevated, and knockdown of them could suppress NE-induced oxidative stress, cardiomyocyte hypertrophy, fibrosis, as well as mitochondrial dysfunction. Transforming growth factor beta1(TGFß1)/SMADs signaling pathway was inactivated by RDN in the HF rats, which sequentially inhibited specificity protein 1 (SP1)-mediated transcription of PACS2 and BACH1. CONCLUSION: Collectively, these data demonstrated that RDN improved cardiac hypertrophy and sympathetic nerve activity of HF rats via repressing BACH1 and PACS-2-mediated mitochondrial oxidative stress by inactivating TGF-ß1/SMADs/SP1 pathway, which shed lights on the cardioprotective mechanism of RDN in HF.

2.
Pak J Med Sci ; 40(4): 782-784, 2024.
Article in English | MEDLINE | ID: mdl-38545008

ABSTRACT

We identified the PACS2 gene responsible for the multifunctional sorting protein that play a role in nuclear gene expression as well as pathway traffic regulation. Diseases associated with PACS2 include early infantile epileptic encephalopathy (EIEE66), alacrima, achalasia, and mental retardation syndrome. Whole exome sequencing (WES) technique was used for the identification of variants that may lead to the disease. We identified a consanguineous Saudi family segregating developmental delay, mental retardation and epilepsy. Our results showed a heterozygous missense variant PACS2 gene leading to intellectual disability, epilepsy and cause epileptic encephalopathies (EIEE66) disorder. WES data was analyzed and identified variants were further confirmed by Sanger sequencing validation technique. We identified a heterozygous missense c.625G>A p.Glu209Lys in exon-6 of PACS2. The detected heterozygous mutation in the exon-6 region of PACS2 gene change the protein features and may cause disease. Further, explain the possibility that PACS2 gene play important role to cause intellectual disability, epilepsy and epileptic encephalopathies in this Saudi family.

3.
Protein Sci ; 33(4): e4938, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38533551

ABSTRACT

Regulation of SIRT1 activity is vital to energy homeostasis and plays important roles in many diseases. We previously showed that insulin triggers the epigenetic regulator DBC1 to prime SIRT1 for repression by the multifunctional trafficking protein PACS-2. Here, we show that liver DBC1/PACS-2 regulates the diurnal inhibition of SIRT1, which is critically important for insulin-dependent switch in fuel metabolism from fat to glucose oxidation. We present the x-ray structure of the DBC1 S1-like domain that binds SIRT1 and an NMR characterization of how the SIRT1 N-terminal region engages DBC1. This interaction is inhibited by acetylation of K112 of DBC1 and stimulated by the insulin-dependent phosphorylation of human SIRT1 at S162 and S172, catalyzed sequentially by CK2 and GSK3, resulting in the PACS-2-dependent inhibition of nuclear SIRT1 enzymatic activity and translocation of the deacetylase in the cytoplasm. Finally, we discuss how defects in the DBC1/PACS-2-controlled SIRT1 inhibitory pathway are associated with disease, including obesity and non-alcoholic fatty liver disease.


Subject(s)
Adaptor Proteins, Signal Transducing , Sirtuin 1 , Humans , Sirtuin 1/genetics , Sirtuin 1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Glycogen Synthase Kinase 3/metabolism , Protein Processing, Post-Translational , Insulin/metabolism
4.
Biomolecules ; 14(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38540691

ABSTRACT

BACKGROUND: Developmental and epileptic encephalopathies (DEE) encompass a group of rare diseases with hereditary and genetic causes as well as acquired causes such as brain injuries or metabolic abnormalities. The phosphofurin acidic cluster sorting protein 2 (PACS2) is a multifunctional protein with nuclear gene expression. The first cases of the recurrent c.625G>A pathogenic variant of PACS2 gene were reported in 2018 by Olson et al. Since then, several case reports and case series have been published. METHODS: We performed a systematic review of the PUBMED and SCOPUS databases using Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Our search parameters included DEE66 with a pathogenic PACS2 gene p.Glu209Lys mutation published cases to which we added our own clinical experience regarding this pathology. RESULTS: A total of 11 articles and 29 patients were included in this review, to which we added our own experience for a total of 30 patients. There was not a significant difference between sexes regarding the incidence of this pathology (M/F: 16/14). The most common neurological and psychiatric symptoms presented by the patients were: early onset epileptic seizures, delayed global development (including motor and speech delays), behavioral disturbances, limited intellectual capacity, nystagmus, hypotonia, and a wide-based gait. Facial dysmorphism and other organs' involvement were also frequently reported. Brain MRIs evidenced anomalies of the posterior cerebellar fossa, foliar distortion of the cerebellum, vermis hypoplasia, white matter reduction, and lateral ventricles enlargement. Genetic testing is more frequent in children. Only 4 cases have been reported in adults to date. CONCLUSIONS: It is important to maintain a high suspicion of new pathogenic gene variants in adult patients presenting with a characteristic clinical picture correlated with radiologic changes. The neurologist must gradually recognize the distinct evolving phenotype of DEE66 in adult patients, and genetic testing must become a scenario with which the neurologist attending adult patients should be familiar. Accurate diagnosis is required for adequate treatment, genetic counseling, and an improved long-term prognosis.


Subject(s)
Brain Injuries , Epilepsy , Child , Adult , Humans , Epilepsy/genetics , Mutation , Cerebellum , Phenotype , Vesicular Transport Proteins
5.
Int J Biol Sci ; 20(2): 569-584, 2024.
Article in English | MEDLINE | ID: mdl-38169625

ABSTRACT

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Mitochondrial dysfunction in renal tubules, occurring early in the disease, is linked to the development of DKD, although the underlying pathways remain unclear. Here, we examine diabetic human and mouse kidneys, and HK-2 cells exposed to high glucose, to show that high glucose disrupts mitochondria-associated endoplasmic reticulum membrane (MAM) and causes mitochondrial fragmentation. We find that high glucose conditions increase mitogen-activated protein kinase 1(MAPK1), a member of the MAP kinase signal transduction pathway, which in turn lowers the level of phosphofurin acidic cluster sorting protein 2 (PACS-2), a key component of MAM that tethers mitochondria to the ER. MAPK1-induced disruption of MAM leads to mitochondrial fragmentation but this can be rescued in HK-2 cells by increasing PACS-2 levels. Functional studies in diabetic mice show that inhibition of MAPK1 increases PACS-2 and protects against the loss of MAM and the mitochondrial fragmentation. Taken together, these results identify the MAPK1-PACS-2 axis as a key pathway to therapeutically target as well as provide new insights into the pathogenesis of DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mitochondrial Diseases , Mice , Humans , Animals , Diabetes Mellitus, Experimental/complications , Mitogen-Activated Protein Kinase 1 , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL