Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612704

ABSTRACT

This study investigates the toxic effect of harmful materials, unfiltered by the placenta, on neonatal umbilical cord (UC) vessels, focusing on stress-induced adaptations in transcriptional and translational processes. It aims to analyze changes in pathways related to mRNA condensate formation, transcriptional regulation, and DNA damage response under maternal smoking-induced stress. UC vessels from neonates born to smoking (Sm) and nonsmoking mothers (Ctr) were examined. Immunofluorescence staining and confocal microscopy assessed the localization of key markers, including Transcription Complex Subunit 1 (CNOT1) and the largest subunit of RNA polymerase II enzyme (RPB1). Additionally, markers of DNA damage response, such as Poly(ADP-ribose) polymerase-1, were evaluated. In Sm samples, dissolution of CNOT1 granules in UC vessels was observed, potentially aiding stalled translation and enhancing transcription via RPB1 assembly and translocation. Control vessels showed predominant cytoplasmic RPB1 localization. Despite adaptive responses, Sm endothelial cells exhibited significant damage, indicated by markers like Poly(ADP-ribose) polymerase-1. Ex vivo metal treatment on control vessels mirrored Sm sample alterations, emphasizing marker roles in cell survival under toxic exposure. Maternal smoking induces specific molecular adaptations in UC vessels, affecting mRNA condensate formation, transcriptional regulation, and DNA damage response pathways. Understanding these intricate molecular mechanisms could inform interventions to improve neonatal health outcomes and mitigate adverse effects of toxic exposure during pregnancy.


Subject(s)
Cone-Rod Dystrophies , Endothelial Cells , Infant, Newborn , Humans , Female , Pregnancy , Gene Expression Regulation , Transcription, Genetic , Poly(ADP-ribose) Polymerases , RNA, Messenger/genetics , Transcription Factors
2.
Heliyon ; 9(3): e14029, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911881

ABSTRACT

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

3.
Front Cell Dev Biol ; 10: 916415, 2022.
Article in English | MEDLINE | ID: mdl-36092717

ABSTRACT

The current standard treatments of glioma include surgical resection, supplemented with radiotherapy and chemotherapy, but the prognosis is poor. PARP-1 (Poly ADP-ribose polymerase 1) is a hot spot for cancer-targeted therapy and was reported to be significantly elevated in glioma. In this study, we analyzed the role of PARP-1 in DNA damage repair, constructed a PARP1-related DNA-repair prognostic signature (DPS), and screened targeted drugs for glioma. RNA-seq data of 639 glioma samples were downloaded from the GEO (Gene Expression Omnibus) database and divided into PARP1_H and PARP1_L according to the front and rear thirds of the expression level of PARP-1. First, we systematically analyzed the influence of PARP-1 on DNA damage repair, prognosis, and chemoradiotherapy sensitization of glioma. All glioma patients and patients with radiotherapy or chemotherapy had a better prognosis in PARP1_L than in PARP1_H. Next, differentially expressed DNA-repair related genes (DEGs) were identified between PARP1_H and PARP1_L by LASSO (Least Absolute Shrinkage and Selection Operator) Cox analysis and applied for constructing DPS. Based on the four-gene DPS, we then developed a new nomogram to assess overall survival in glioma patients. Additionally, PARP-1 was proved an effective target for glioma therapy. So, a series of computer-aided techniques, including Discovery Studio 4.5, Schrodinger, and PyMol, were applied for the virtual screening of favorable PARP-1 inhibitors. In conclusion, this study investigated the effect of PARP-1 on glioma prognosis and the sensitization effect of radiotherapy and chemotherapy, established a novel nomogram to evaluate the overall survival of glioma patients, and further explored targeted therapy for glioma.

4.
Acta Pharm Sin B ; 12(3): 1041-1053, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35530130

ABSTRACT

The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.

5.
Acta Pharm Sin B ; 11(5): 1286-1299, 2021 May.
Article in English | MEDLINE | ID: mdl-34094834

ABSTRACT

The bromodomain and extraterminal (BET) family member BRD4 is pivotal in the pathogenesis of cardiac hypertrophy. BRD4 induces hypertrophic gene expression by binding to the acetylated chromatin, facilitating the phosphorylation of RNA polymerases II (Pol II) and leading to transcription elongation. The present study identified a novel post-translational modification of BRD4: poly(ADP-ribosyl)ation (PARylation), that was mediated by poly(ADP-ribose)polymerase-1 (PARP1) in cardiac hypertrophy. BRD4 silencing or BET inhibitors JQ1 and MS417 prevented cardiac hypertrophic responses induced by isoproterenol (ISO), whereas overexpression of BRD4 promoted cardiac hypertrophy, confirming the critical role of BRD4 in pathological cardiac hypertrophy. PARP1 was activated in ISO-induced cardiac hypertrophy and facilitated the development of cardiac hypertrophy. BRD4 was involved in the prohypertrophic effect of PARP1, as implied by the observations that BRD4 inhibition or silencing reversed PARP1-induced hypertrophic responses, and that BRD4 overexpression suppressed the anti-hypertrophic effect of PARP1 inhibitors. Interactions of BRD4 and PARP1 were observed by co-immunoprecipitation and immunofluorescence. PARylation of BRD4 induced by PARP1 was investigated by PARylation assays. In response to hypertrophic stimuli like ISO, PARylation level of BRD4 was elevated, along with enhanced interactions between BRD4 and PARP1. By investigating the PARylation of truncation mutants of BRD4, the C-terminal domain (CTD) was identified as the PARylation modification sites of BRD4. PARylation of BRD4 facilitated its binding to the transcription start sites (TSS) of hypertrophic genes, resulting in enhanced phosphorylation of RNA Pol II and transcription activation of hypertrophic genes. The present findings suggest that strategies targeting inhibition of PARP1-BRD4 might have therapeutic potential for pathological cardiac hypertrophy.

6.
Acta Pharm Sin B ; 11(1): 156-180, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532187

ABSTRACT

This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, 19d was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively. Compound 19d was further shown to efficiently modulate the expression of BRD4 and PARP1. Subsequently, compound 19d was found to induce breast cancer cell apoptosis and stimulate cell cycle arrest at G1 phase. Following pharmacokinetic studies, compound 19d showed its antitumor activity in breast cancer susceptibility gene 1/2 (BRCA1/2) wild-type MDA-MB-468 and MCF-7 xenograft models without apparent toxicity and loss of body weight. These results together demonstrated that a highly potent dual-targeted inhibitor was successfully synthesized and indicated that co-targeting of BRD4 and PARP1 based on the concept of synthetic lethality would be a promising therapeutic strategy for breast cancer.

8.
Acta Pharm Sin B ; 9(5): 1021-1034, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31649851

ABSTRACT

Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest-a phenomenon known as mitotic catastrophe, which is followed by immediate cell death via apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in vivo in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.

9.
Acta Pharm Sin B ; 9(4): 782-793, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31384538

ABSTRACT

The clinical application of doxorubicin (DOX) in cancer chemotherapy is limited by its life-threatening cardiotoxic effects. Chrysophanol (CHR), an anthraquinone compound isolated from the rhizome of Rheum palmatum L., is considered to play a broad role in a variety of biological processes. However, the effects of CHR׳s cardioprotection in DOX-induced cardiomyopathy is poorly understood. In this study, we found that the cardiac apoptosis, mitochondrial injury and cellular PARylation levels were significantly increased in H9C2 cells treated by Dox, while these effects were suppressed by CHR. Similar results were observed when PARP1 activity was suppressed by its inhibitors 3-aminobenzamide (3AB) and ABT888. Ectopic expression of PARP1 effectively blocked this CHR׳s cardioprotection against DOX-induced cardiomyocyte injury in H9C2 cells. Furthermore, pre-administration with both CHR and 3AB relieved DOX-induced cardiac apoptosis, mitochondrial impairment and heart dysfunction in Sprague-Dawley rat model. These results revealed that CHR protects against DOX-induced cardiotoxicity by suppressing cellular PARylation and provided critical evidence that PARylation may be a novel target for DOX-induced cardiomyopathy.

10.
J Tradit Complement Med ; 8(3): 420-427, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29989058

ABSTRACT

Mitochondrial dysfunction and oxidative stress are two factors that are thought to contribute to the pathogenesis of Parkinson's disease (PD), a debilitating progressive neurodegenerative disorder that results in the loss of catecholamine producing cells throughout specific regions of the brain. In this study we aimed to compare the effects of hydrogen peroxide (H2O2) and rotenone (a pesticide and mitochondrial complex 1 inhibitor) on cell viability and the expression of tyrosine hydroxylase (TH) in a cellular model of PD. We also sought to investigate the potential neuroprotective benefits of bioactive constituents from cinnamon, hemp seed and polygonum cuspidatum. To create a model, SH-SY5Y cells transfected with human TH isoform 1 were treated with varying concentrations of H2O2 and rotenone, in the presence or absence of bioactive constituents. The effect of these toxins and constituents on cell viability, apoptosis and protein expression was assessed using MTT viability assays and western blotting. Rotenone treatment caused a significant decrease in cell viability but a significant increase in TH in the remaining cells. H2O2 treatment caused a significant decrease in cell viability but had no significant effect on TH expression. Curcumin, cinnamaldehyde, caffeoyltyramide (hemp seed extract) and piceatannol glucoside (polygonum cuspidatum extract) were unable to attenuate rotenone induced cell death, however they were able to provide protection against H2O2 induced cell death. This is the first study to demonstrate the neuroprotective properties of cinnamaldehyde, caffeoyltyramide and piceatannol glucoside in a dopaminergic cell line in response to H2O2.

11.
Cell Chem Biol ; 24(9): 1101-1119, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28938088

ABSTRACT

To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase.


Subject(s)
DNA Repair , Neoplasms/drug therapy , Small Molecule Libraries/chemistry , DNA Helicases/antagonists & inhibitors , DNA Helicases/metabolism , DNA Repair/drug effects , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Humans , MRE11 Homologue Protein , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Rad51 Recombinase/antagonists & inhibitors , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/antagonists & inhibitors , Rad52 DNA Repair and Recombination Protein/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use
12.
Cancer Biol Ther ; 16(7): 1005-13, 2015.
Article in English | MEDLINE | ID: mdl-25985143

ABSTRACT

DNA is the prime target of anticancer treatments. DNA damage triggers a series of signaling cascades promoting cellular survival, including DNA repair, cell cycle arrest, and autophagy. The elevated basal and/or stressful levels of both DNA repair and autophagy observed in tumor cells, in contrast to normal cells, have been identified as the most important drug-responsive programs that impact the outcome of anticancer therapy. The exact relationship between DNA repair and autophagy in cancer cells remains unclear. On one hand, autophagy has been shown to regulate some of the DNA repair proteins after DNA damage by maintaining the balance between their synthesis, stabilization, and degradation. One the other hand, some evidence has demonstrated that some DNA repair molecular have a crucial role in the initiation of autophagy. In this review, we mainly discuss the interplay between DNA repair and autophagy in anticancer therapy and expect to enlighten some effective strategies for cancer treatment.


Subject(s)
Autophagy/genetics , DNA Damage , DNA Repair , Neoplasms/genetics , Signal Transduction , Apoptosis/genetics , Cell Survival/genetics , Humans , Models, Genetic , Neoplasms/metabolism , Neoplasms/therapy
13.
Autophagy ; 11(2): 344-54, 2015.
Article in English | MEDLINE | ID: mdl-25831014

ABSTRACT

Shiga toxins (Stxs) are a family of cytotoxic proteins that lead to the development of bloody diarrhea, hemolytic-uremic syndrome, and central nervous system complications caused by bacteria such as S. dysenteriae, E. coli O157:H7 and E. coli O104:H4. Increasing evidence indicates that macroautophagy (autophagy) is a key factor in the cell death induced by Stxs. However, the associated mechanisms are not yet clear. This study showed that Stx2 induces autophagic cell death in Caco-2 cells, a cultured line model of human enterocytes. Inhibition of autophagy using pharmacological inhibitors, such as 3-methyladenine and bafilomycin A1, or silencing of the autophagy genes ATG12 or BECN1 decreased the Stx2-induced death in Caco-2 cells. Furthermore, there were numerous instances of dilated endoplasmic reticulum (ER) in the Stx2-treated Caco-2 cells, and repression of ER stress due to the depletion of viable candidates of DDIT3 and NUPR1. These processes led to Stx2-induced autophagy and cell death. Finally, the data showed that the pseudokinase TRIB3-mediated DDIT3 expression and AKT1 dephosphorylation upon ER stress were triggered by Stx2. Thus, the data indicate that Stx2 causes autophagic cell death via the ER stress pathway in intestinal epithelial cells.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Epithelial Cells/drug effects , Shiga Toxins/pharmacology , Animals , Cell Death/drug effects , Cells, Cultured , Epithelial Cells/cytology , Escherichia coli , Humans , Mice, Inbred C57BL , Transcription Factor CHOP
14.
Autophagy ; 11(2): 314-31, 2015.
Article in English | MEDLINE | ID: mdl-25803782

ABSTRACT

An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Withanolides/pharmacology , Autophagy/physiology , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Humans , Male , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects
15.
Autophagy ; 11(2): 214-24, 2015.
Article in English | MEDLINE | ID: mdl-25607248

ABSTRACT

Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.


Subject(s)
Autophagy/physiology , HMGB1 Protein/metabolism , Poly(ADP-ribose) Polymerases/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Humans , Mice , Poly (ADP-Ribose) Polymerase-1 , Signal Transduction/physiology
16.
Liver Int ; 35(4): 1430-41, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24821649

ABSTRACT

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is associated with a poor prognosis because of a lack of effective treatment options. The objective of this study was to examine a new strategy for HCC treatment, namely the use of poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor (ABT-888) together with Temozolomide (TMZ) incorporated onto magnetic nanoparticles. METHODS: Magnetic Fe3 O4 /Fe cores were encapsulated within a silica shell to facilitate the simultaneous incorporation of ABT-888 and TMZ. In vitro tests were performed with HepG2, Hep3B and PLC-PRF-5 liver tumoural cell lines and with WRL-68 liver non-tumoural cells. RESULTS: The magnetic nanocarriers were loaded simultaneously with ABT-888 and TMZ. High stability and extended release were achieved in culture medium. Confocal microscopy images showed that drug-loaded particles were uptaken and accumulated into the cytoplasm of liver tumoural cells, inducing the following effects: G2/M cell cycle arrest (P < 0.05), accumulation of DNA damage (P < 0.05), mitochondrial depolarization (P < 0.01), reduction in BCL-xL, FOS, JUND gene expression (P < 0.05), PARP-1 fragmentation, Caspase-3 activation and apoptotic cell death (P < 0.05). Interestingly, drugs loaded onto nanoparticles exhibited better efficiency than free drugs (cell death triggered by drug delivery nanosystem: 53.5% vs. 34.5% by free drugs, P = 0.01). CONCLUSIONS: These magnetic nanocompounds are able to incorporate both drugs simultaneously, enter the tumour cells and release them. ABT-888/TMZ/NPs decrease the transcription of key genes involved in tumour survival and induce apoptotic cell death in a more effective manner than is achieved by free drugs.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzimidazoles/pharmacology , Carcinoma, Hepatocellular/drug therapy , Dacarbazine/analogs & derivatives , Drug Carriers , Liver Neoplasms/drug therapy , Magnetite Nanoparticles , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Antineoplastic Agents, Alkylating/chemistry , Antineoplastic Agents, Alkylating/metabolism , Apoptosis/drug effects , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , Chemistry, Pharmaceutical , DNA Damage , Dacarbazine/chemistry , Dacarbazine/metabolism , Dacarbazine/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Drug Synergism , G2 Phase Cell Cycle Checkpoints/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Signal Transduction/drug effects , Technology, Pharmaceutical/methods , Temozolomide
17.
Cell Cycle ; 13(21): 3442-9, 2014.
Article in English | MEDLINE | ID: mdl-25485588

ABSTRACT

BRCA mutations are the main known hereditary factor for breast cancer. Notably, poly (ADP-ribose) polymerase 1 (PARP1) expression status plays a critical role in breast cancer progression and the clinical development of PARP1 inhibitors to treat BRCA-mutated breast cancer has advanced rapidly. However, dynamic crosstalk between BRCA1 and PARP1 remains largely unknown. Here, we showed that: (i) BRCA1 inactivation events (mutation, promoter methylation, or knockdown) were accompanied by increased PARP1 and nicotinamide adenine dinucleotide (NAD) levels, and a subsequent increase in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; (ii) the overexpression of BRCA1 resulted in decreased PARP1 and NAD levels, and a subsequent impairment in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; and (iii) intracellular NAD levels were largely responsible for regulating PARP1 activity in breast cancer cells, and NAD levels were positively correlated with PARP1 activity in human breast cancer specimens (R = 0.647, P < 0.001). Interestingly, the high efficiency of PARP1 triggered by BRCA1 inactivation may further inhibit BRCA1 transcription by NAD depletion. These results highlight a novel interaction between BRCA1 and PARP1, which may be beneficial for the dynamic balance between BRCA1 and PARP1-related biologic processes, especially for maintaining stable DNA repair ability. All of this may improve our understanding of the basic molecular mechanism underlying BRCA1- and PARP1-related breast cancer progression.


Subject(s)
BRCA1 Protein/metabolism , Poly(ADP-ribose) Polymerases/metabolism , BRCA1 Protein/antagonists & inhibitors , BRCA1 Protein/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CpG Islands , DNA Methylation , DNA Repair , Female , Humans , MCF-7 Cells , Mutation , NAD/metabolism , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Transcription, Genetic , Tumor Cells, Cultured
18.
Toxicol Rep ; 1: 1013-1025, 2014.
Article in English | MEDLINE | ID: mdl-28962314

ABSTRACT

Crosstalk between apoptosis and autophagy is budding as one of the novel strategies in the cancer therapeutics. The present study tinted toward the interdependence of autophagy and apoptosis induce by a novel quinazolinone derivative 2,3-dihydro-2-(quinoline-5-yl) quinazolin-4(1H)-one structure [DQQ] in human leukemia MOLT-4 cells. DQQ induces cytochrome c arbitrated apoptosis and autophagy in MOLT-4 cells. Apoptosis induces by DQQ was confirmed through a battery of assay e.g. cellular and nuclear microscopy, annexin-V assay, cell cycle analysis, loss of mitochondrial membrane potential and immune-expression of cytochrome c, caspases and PARP. Furthermore, acridine orange staining, LC3 immunofluorescence and western blotting of key autophagy proteins revealed the autophagic potential of DQQ. A universal caspase inhibitor, Z-VAD-FMK and cytochrome c silencing, strongly inhibited the DQQ induce autophagy and apoptosis. Beclin1 silencing through siRNA partially reversed the cell death, which was not as significant as by cytochrome c silencing. Although, it partially reversed the PARP cleavage induced by DQQ, indicating the role of autophagy in the regulation of apoptosis. The present study first time portrays the negative feedback potential of cytochrome c regulated autophagy and the importance of quinazolinone derivative in discovery of novel anticancer therapeutics.

19.
J Clin Exp Hepatol ; 3(2): 89-95, 2013 Jun.
Article in English | MEDLINE | ID: mdl-25755481

ABSTRACT

BACKGROUND: High mobility group box1 (HMGB1) and poly(ADP-ribose) polymerase1 (PARP1) proteins repair cellular DNA damage. Reduced expression of the corresponding genes can lead to an impaired DNA damage repair mechanism. Intracellular replication of hepatitis B virus (HBV) in such conditions can favor the integration of viral DNA into host genome leading to the development of hepatocellular carcinoma (HCC). OBJECTIVE: This study was performed to assess the expression of HMGB1 and PARP1 mRNAs in conjunction with the estimation of HBV replication intermediate pregenomic RNA (PgRNA) in various phases of HBV infection. MATERIALS: Eighty eight patients and 26 voluntary blood donors as controls were included in the study. Patients were grouped in to acute (AHB; n = 15), inactive carriers (IC; n = 36), cirrhosis (Cirr; n = 25) and hepatocellular carcinoma (HCC; n = 12). Serum HBV DNA was quantified by real time polymerase chain reaction (PCR) assay. Expression of HMGB1, PARP1 and PgRNA were evaluated using peripheral blood mononuclear cells (PBMCs) derived RNA by reverse transcription PCR (RT-PCR) and densitometry. RESULTS: Significant reduction of HMGB1 and PARP1 gene expressions (P < 0.05) were observed in patients than controls with more explicit decline of PARP1 (P = 0.0002). Both genes were significantly downregulated (P < 0.001) in ICs than controls. In ICs, HMGB1 was significantly lowered than cirrhosis (P = 0.002) and HCC (P = 0.0006) while PARP1 declined significantly (P = 0.04) than HCC. Level of PgRNA was comparable in all the disease categories. CONCLUSION: In conclusion, our findings indicate impaired DNA damage repair mechanisms in HBV infected cells of ICs. This, along with low viral load but higher level of PgRNA in this group is suggestive of the diversion of HBV replication pathway that might facilitate viral DNA integration in to host genome. Intrusion of HBV PgRNA reverse transcription in early stage of infection might appear advantageous to thwart the development of HCC.

SELECTION OF CITATIONS
SEARCH DETAIL