Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39229139

ABSTRACT

Objectives: Mono(ADP-ribosyl)ation (MARylation), a post translational modification of proteins, is emerging as an important regulator of the biology of cancer cells. PARP7 (TiPARP), a mono (ADP-ribosyl) transferase (MART), MARylates its substrate α-tubulin in ovarian cancer cells, promoting destabilization of microtubules, cell growth, and migration. Recent development of RBN-2397, a potent inhibitor that selectively acts on PARP7, has provided a new tool for exploring the role of PARP7 catalytic activity in biological processes. In this study, we investigated the role of PARP7 catalytic activity in the regulation of ovarian cancer cell biology via MARylation of α-tubulin. Methods: Ovarian cancer cell lines (OVCAR4, OVCAR3) were treated with RBN-2397 and paclitaxel, both separately and in combination. Western blotting and immunoprecipitation confirmed the effects of RBN-2397 on α-tubulin MARylation and stabilization. Cell proliferation and migration were assessed, and α-tubulin stabilization was quantified using immunofluorescent imaging. RNA-sequencing was performed to assess the effects on gene expression changes. Results: RBN-2397 inhibited PARP7 activity, decreasing α-tubulin MARylation, leading to its stabilization, and reducing cancer cell proliferation and migration. The addition of paclitaxel further enhanced these effects, highlighting a synergistic interaction between the two drugs. Mutating the site of PARP7-mediated MARylation on α-tubulin similarly resulted in microtubule stabilization and decreased cell migration in the presence of paclitaxel. Conclusions: This study demonstrates that targeting PARP7 with RBN-2397, particularly in combination with paclitaxel, offers an effective strategy for inhibiting aggressive ovarian cancer cell phenotypes. Our findings underscore the potential of combining PARP7 inhibitors with established chemotherapeutics to enhance treatment efficacy in ovarian cancer.

2.
Bioorg Chem ; 148: 107469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781669

ABSTRACT

PARP7 has been proven to play an important role in immunity. Substantial upregulation of PARP7 is observed in numerous cancerous cell types, consequently resulting in the inhibition of type Ⅰ interferon signaling pathways. Therefore, inhibiting the activity of PARP7 can enhance type Ⅰ interferon signaling to exert an anti-tumor immune response. In this study, we reported the identification of a newly found PARP7 inhibitor (XLY-1) with higher inhibitory activity (IC50 = 0.6 nM) than that of RBN-2397 (IC50 = 6.0 nM). Additionally, XYL-1 displayed weak inhibitory activity on PARP1 (IC50 > 1.0 µM). Mechanism studies showed that XYL-1 could enhance the type Ⅰ interferon signaling in vitro. Pharmacodynamic experiments showed that 50 mg/kg XYL-1 could significantly inhibit tumor growth (TGI: 76.5 %) and related experiments showed that XYL-1 could restore type Ⅰ interferon signaling and promote T cell infiltration in tumor tissues. Taken together, XYL-1 shows promise as a potential candidate for developing cancer immunotherapy agents.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Discovery , Drug Screening Assays, Antitumor , Immunotherapy , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Animals , Mice , Cell Proliferation/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Mice, Inbred BALB C
3.
Adv Sci (Weinh) ; 11(15): e2309026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342608

ABSTRACT

Tumor-associated macrophages (TAM) are a diverse population of myeloid cells that are often abundant and immunosuppressive in human cancers. CXCL9Hi TAM has recently been described to have an antitumor phenotype and is linked to immune checkpoint response. Despite the emerging understanding of the unique antitumor TAM phenotype, there is a lack of TAM-specific therapeutics to exploit this new biological understanding. Here, the discovery and characterization of multiple small-molecule enhancers of chemokine ligand 9 (CXCL9) and their targeted delivery in a TAM-avid systemic nanoformulation is reported. With this strategy, it is efficient encapsulation and release of multiple drug loads that can efficiently induce CXCL9 expression in macrophages, both in vitro and in vivo in a mouse tumor model. These observations provide a window into the molecular features that define TAM-specific states, an insight a novel therapeutic anticancer approach is used to discover.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Animals , Humans , Mice , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Macrophages/metabolism , Neoplasms/pathology , Phenotype
4.
Eur J Med Chem ; 266: 116160, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38277917

ABSTRACT

PARP7 has been recently identified as an effective drug target due to its specific role in tumor generation and immune function recovery. Herin, we report the discovery of compound 8, which contained a tricyclic fused ring, as a highly selective PARP7 inhibitor against other PARPs. In particular, compound 8 strongly inhibits PARP7 with an IC50 of 0.11 nM, and suppresses the proliferation of NCI-H1373 lung cancer cells with an IC50 of 2.5 nM. Compound 8 exhibits a favorable pharmacokinetic profile with a bioavailability of 104 % in mice, and 78 % in dogs. Importantly, daily treatment of 30 mg/kg of 8 induced 81.6 % tumor suppression in NCI-H1373 lung xenograft mice tumor models, which is significantly better than the clinical candidate, RBN-2397. These intriguing features highlight the promising advantages of 8 as an antitumor agent.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Mice , Animals , Dogs , Biological Availability , Antineoplastic Agents/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation
5.
Proc Natl Acad Sci U S A ; 120(49): e2309047120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011562

ABSTRACT

PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1. Loss of FRA1 ADP-ribosylation via PARP7 inhibition by RBN-2397 or mutation of the ADP-ribosylation site C97 increased FRA1 degradation by the proteasome via PSMC3. The reduction in FRA1 protein levels promoted IRF1- and IRF3-dependent cytokine as well as proapoptotic gene expression, culminating in CASP8-mediated apoptosis. Furthermore, high PARP7 expression was indicative of the PARP7 inhibitor response in FRA1-positive lung and breast cancer cells. Collectively, our findings highlight the connected roles of PARP7 and FRA1 and emphasize the clinical potential of PARP7 inhibitors for FRA1-driven cancers.


Subject(s)
ADP-Ribosylation , Neoplasms , Nucleoside Transport Proteins , Proto-Oncogene Proteins c-fos , Humans , ADP Ribose Transferases/metabolism , Apoptosis , Cell Transformation, Neoplastic , Gene Expression Regulation , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-3/metabolism , Neoplasms/genetics , Nucleoside Transport Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism
6.
Eur J Med Chem ; 261: 115836, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37826932

ABSTRACT

PARP7 has emerged as a promising anti-tumor target due to its crucial roles in nucleic acid sensing and immune regulation. Herein, we explored the structural-activity relationship of tricyclic PARP7 inhibitors containing a hexahydropyrazino[1,2-d]pyrido[3,2-b][1,4]oxazine motif. The effects of the chirality of the fused rings, the group conjugated to the fused rings, and the size of the linker on PARP7 inhibition were fully investigated. Our work leads to the discovery of an extremely potent and orally-bioavailable PARP7 inhibitor, namely 18 (PARP7 inhibition IC50 = 0.56 nM), for efficacious treatment of lung cancer in vivo. Notably, 18 showed acceptable bioavailability in ICR mice (F = 33.9%) and Beagle dogs (F = 45.2%). Further investigation of ADME-T properties suggested that 18 has the potential to be developed as a candidate drug molecule for PARP7-sensitive tumors.


Subject(s)
Structure-Activity Relationship , Mice , Animals , Dogs , Mice, Inbred ICR , Biological Availability
7.
Cancers (Basel) ; 15(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37509350

ABSTRACT

PARP7 is a member of the ADP-ribosyltransferase diphtheria toxin-like (ARTD) family and acts as a repressor of type I interferon (IFN) signaling. PARP7 inhibition causes tumor regression by enhancing antitumor immunity, which is dependent on the stimulator of interferon genes (STING) pathway, TANK-binding kinase 1 (TBK1) activity, and cytotoxic CD8+ T cells. To better understand PARP7's role in cancer, we generated and characterized PARP7 knockout (Parp7KO) EO771 mouse mammary cancer cells in vitro and in a preclinical syngeneic tumor model using catalytic mutant Parp7H532A mice. Loss of PARP7 expression or inhibition of its activity increased type I IFN signaling, as well as the levels of interferon-stimulated gene factor 3 (ISGF3) and specifically unphosphorylated-ISGF3 regulated target genes. This was partly because PARP7's modification of the RelA subunit of nuclear factor κ-B (NF-κB). PARP7 loss had no effect on tumor growth in immunodeficient mice. In contrast, injection of wildtype cells into Parp7H532A mice resulted in smaller tumors compared with cells injected into Parp7+/+ mice. Parp7H532A mice injected with Parp7KO cells failed to develop tumors and those that developed regressed. Our data highlight the importance of PARP7 in the immune cells and further support targeting PARP7 for anticancer therapy.

8.
EMBO Mol Med ; 15(3): e16235, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36652375

ABSTRACT

Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown great promise for treating BRCA-deficient tumors. However, over 40% of BRCA-deficient patients fail to respond to PARPi. Here, we report that thioparib, a next-generation PARPi with high affinity against multiple PARPs, including PARP1, PARP2, and PARP7, displays high antitumor activities against PARPi-sensitive and -resistant cells with homologous recombination (HR) deficiency both in vitro and in vivo. Thioparib treatment elicited PARP1-dependent DNA damage and replication stress, causing S-phase arrest and apoptosis. Conversely, thioparib strongly inhibited HR-mediated DNA repair while increasing RAD51 foci formation. Notably, the on-target inhibition of PARP7 by thioparib-activated STING/TBK1-dependent phosphorylation of STAT1, triggered a strong induction of type I interferons (IFNs), and resulted in tumor growth retardation in an immunocompetent mouse model. However, the inhibitory effect of thioparib on tumor growth was more pronounced in PARP1 knockout mice, suggesting that a specific PARP7 inhibitor, rather than a pan inhibitor such as thioparib, would be more relevant for clinical applications. Finally, genome-scale CRISPR screening identified PARP1 and MCRS1 as genes capable of modulating thioparib sensitivity. Taken together, thioparib, a next-generation PARPi acting on both DNA damage response and antitumor immunity, serves as a therapeutic potential for treating hyperactive HR tumors, including those resistant to earlier-generation PARPi.


Subject(s)
Interferon Type I , Neoplasms , Animals , Mice , Cell Line, Tumor , DNA Repair , Homologous Recombination , Interferon Type I/genetics , Interferon Type I/therapeutic use , Neoplasms/genetics , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Recombinational DNA Repair , RNA-Binding Proteins/genetics , Drug Resistance, Neoplasm
9.
Cell Chem Biol ; 30(1): 43-54.e8, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36529140

ABSTRACT

The mono-ADP-ribosyltransferase PARP7 has emerged as a key negative regulator of cytosolic NA-sensors of the innate immune system. We apply a rational design strategy for converting a pan-PARP inhibitor into a potent selective PARP7 inhibitor (KMR-206). Consistent with studies using the structurally distinct PARP7 inhibitor RBN-2397, co-treatment of mouse embryonic fibroblasts with KMR-206 and NA-sensor ligands synergistically induced the expression of the type I interferon, IFN-ß. In mouse colon carcinoma (CT-26) cells, KMR-206 alone induced IFN-ß. Both KMR-206 and RBN-2397 increased PARP7 protein levels in CT-26 cells, demonstrating that PARP7's catalytic activity regulates its own protein levels. Curiously, treatment with saturating doses of KMR-206 and RBN-2397 achieved different levels of PARP7 protein, which correlated with the magnitude of type I interferon gene expression. These latter results have important implications for the mechanism of action of PARP7 inhibitors and highlights the usefulness of having structurally distinct chemical probes for the same target.


Subject(s)
Antineoplastic Agents , Interferon Type I , Nucleic Acids , Animals , Mice , Fibroblasts , Signal Transduction
10.
Methods Mol Biol ; 2609: 387-395, 2023.
Article in English | MEDLINE | ID: mdl-36515849

ABSTRACT

PARP7 is an enzyme that catalyzes mono-ADP-ribosylation (MARylation), is a critical regulator of type I interferon signaling, and has emerged as an immune-oncology drug candidate. PARP7 is a labile protein that is regulated in a proteasome-dependent manner. Indeed, endogenous PARP7 levels are undetectable by western blot in most cells. Intriguingly, treatment of cells with orthosteric small molecule inhibitors of PARP7 can increase endogenous PARP7 protein to detectable levels. This characteristic of PARP7 inhibitors could potentially be exploited to assess target engagement-and thus cellular efficacy-of PARP7 inhibitors; however, no method exists to quantitatively monitor endogenous PARP7 levels in a high-throughput manner. In this protocol, we describe an assay using a split Nanoluciferase (NanoLuc) system for quantifying endogenous PARP7 protein levels and PARP7 inhibitor target engagement in cells in a 96-well plate format. We show that this assay can be used to quantify PARP7 protein levels under various cellular treatments and can assess cellular PARP7 inhibitor target engagement. We envision this split NanoLuc PARP7 assay can be used not only for evaluating the cellular efficacy of PARP7 inhibitors in a high-throughput manner but also for uncovering the mechanisms regulating PARP7 protein levels in cells.


Subject(s)
ADP-Ribosylation , Poly(ADP-ribose) Polymerases , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Biological Assay
11.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055106

ABSTRACT

Poly-ADP-ribose polymerases (PARPs) are important regulators of the immune system, including TCDD-inducible poly-ADP-ribose polymerase (TIPARP), also known as poly-ADP-ribose polymerase 7 (PARP7). PARP7 negatively regulates aryl hydrocarbon receptor (AHR) and type I interferon (IFN-I) signaling, both of which have been implicated in intestinal homeostasis and immunity. Since the loss of PARP7 expression increases AHR and IFN-I signaling, we used a murine dextran sulfate sodium (DSS)-induced colitis model to investigate the effect of PARP7 loss on DSS-induced intestinal inflammation. DSS-exposed Parp7-/- mice had less body weight loss, lower disease index scores, and reduced expression of several inflammation genes, including interleukin IL-6, C-x-c motif chemokine ligand 1 (Cxcl1), and lipocalin-2, when compared with wild-type mice. However, no significant difference was observed between genotypes in the colonic expression of the AHR target gene cytochrome P450 1A1 (Cyp1a1). Moreover, no significant differences in microbial composition were observed between the genotypes. Our findings demonstrate that the absence of PARP7 protein results in an impaired immune response to colonic inflammation and suggests that PARP7 may participate in the recruitment of immune cells to the inflammation site, which may be due to its role in IFN-I signaling rather than AHR signaling.


Subject(s)
ADP Ribose Transferases/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Colitis/genetics , Dextran Sulfate/adverse effects , Receptors, Aryl Hydrocarbon/metabolism , Animals , Chemokine CXCL1/genetics , Colitis/chemically induced , Colitis/pathology , Cytochrome P-450 CYP1A1/genetics , Disease Models, Animal , Fibroblasts/chemistry , Fibroblasts/cytology , Gene Knockout Techniques , Interferon Type I/metabolism , Interleukin-6/genetics , Lipocalin-2/genetics , Male , Mice , Signal Transduction , Up-Regulation
12.
Arch Toxicol ; 95(11): 3449-3458, 2021 11.
Article in English | MEDLINE | ID: mdl-34559251

ABSTRACT

Aryl hydrocarbon receptor (AHR) research has shifted from exploring dioxin toxicity to elucidation of various physiologic AHR functions. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert cellular stress-mediated sterile inflammatory responses in exposed human tissues but may be lethal in sensitive species. Inflammation can be thought of as the extreme end of a spectrum ranging from homeostasis to stress responses (sterile inflammation) and to defense against infection (infectious inflammation). Defense against bacterial infection by generation of reactive oxygen species has to be strictly controlled and may use up a considerable amount of energy. NAD+-mediated energy metabolism adapts to various inflammatory responses. As examples, the present commentary tries to integrate responses of AHR and NAD+-consuming enzymes (PARP7/TiPARP, CD38 and sirtuins) into infectious and stress-induced inflammatory responses, the latter exemplified by nonalcoholic fatty liver disease (NAFLD). TCDD toxicity models in sensitive species provide hints to molecular AHR targets of energy metabolism including gluconeogenesis and glycolysis. AHR research remains challenging and promising.


Subject(s)
Inflammation/metabolism , NAD/metabolism , Receptors, Aryl Hydrocarbon , Animals , Energy Metabolism , Humans , Polychlorinated Dibenzodioxins/toxicity
13.
Cancer Cell ; 39(9): 1214-1226.e10, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34375612

ABSTRACT

PARP7 is a monoPARP that catalyzes the transfer of single units of ADP-ribose onto substrates to change their function. Here, we identify PARP7 as a negative regulator of nucleic acid sensing in tumor cells. Inhibition of PARP7 restores type I interferon (IFN) signaling responses to nucleic acids in tumor models. Restored signaling can directly inhibit cell proliferation and activate the immune system, both of which contribute to tumor regression. Oral dosing of the PARP7 small-molecule inhibitor, RBN-2397, results in complete tumor regression in a lung cancer xenograft and induces tumor-specific adaptive immune memory in an immunocompetent mouse cancer model, dependent on inducing type I IFN signaling in tumor cells. PARP7 is a therapeutic target whose inhibition induces both cancer cell-autonomous and immune stimulatory effects via enhanced IFN signaling. These data support the targeting of a monoPARP in cancer and introduce a potent and selective PARP7 inhibitor to enter clinical development.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Interferon Type I/metabolism , Neoplasms/drug therapy , Nucleoside Transport Proteins/genetics , Nucleoside Transport Proteins/metabolism , Small Molecule Libraries/administration & dosage , Adaptive Immunity/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , HEK293 Cells , HeLa Cells , Humans , Mice , Neoplasms/genetics , Neoplasms/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
14.
Biochem J ; 478(15): 2999-3014, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34264286

ABSTRACT

We recently described a signal transduction pathway that contributes to androgen receptor (AR) regulation based on site-specific ADP-ribosylation by PARP7, a mono-ADP-ribosyltransferase implicated in several human cancers. ADP-ribosylated AR is recognized by PARP9/DTX3L, a heterodimeric complex that contains an ADP-ribose reader (PARP9) and a ubiquitin E3 ligase (DTX3L). Here, we have characterized the cellular and biochemical requirements for AR ADP-ribosylation by PARP7. We found that the reaction requires nuclear localization of PARP7 and an agonist-induced conformation of AR. PARP7 contains a Cys3His1-type zinc finger (ZF), which also is critical for AR ADP-ribosylation. The Parp7 ZF is required for efficient nuclear import by a nuclear localization signal encoded in PARP7, but rescue experiments indicate the ZF makes a contribution to AR ADP-ribosylation that is separable from the effect on nuclear transport. ZF mutations do not detectably reduce PARP7 catalytic activity and binding to AR, but they do result in the loss of PARP7 enhancement of AR-dependent transcription of the MYBPC1 gene. Our data reveals critical roles for AR conformation and the PARP7 ZF in AR ADP-ribosylation and AR-dependent transcription.


Subject(s)
ADP Ribose Transferases/metabolism , Androgens/metabolism , Cell Nucleus/metabolism , Nucleoside Transport Proteins/metabolism , Receptors, Androgen/metabolism , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/genetics , ADP-Ribosylation , Androgens/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Catalytic Domain , Gene Expression/drug effects , HEK293 Cells , Humans , Mutation , Neoplasm Proteins/metabolism , Nucleoside Transport Proteins/chemistry , Nucleoside Transport Proteins/genetics , Poly(ADP-ribose) Polymerases/metabolism , Protein Binding , Protein Conformation , Receptors, Androgen/chemistry , Ubiquitin-Protein Ligases/metabolism , Zinc Fingers/genetics
15.
Toxicol Sci ; 183(1): 154-169, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34129049

ABSTRACT

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-adenosine diphosphate (ADP)-ribose polymerase (TIPARP/PARP7), an aryl hydrocarbon receptor (AHR) target gene and mono-ADP-ribosyltransferase, acts as part of a negative feedback loop to repress AHR signaling. This process is prevented by a single H532A mutation in TIPARP that destroys its catalytic activity. We hypothesized that the loss of TIPARP catalytic activity would increase sensitivity to TCDD-induced toxicity in vivo. To test this, we created a catalytically deficient mouse line (TiparpH532A) by introducing a single H532A mutation in TIPARP. Treatment of mouse embryonic fibroblasts or hepatocytes isolated from TiparpH532A mice confirmed the increased TCDD-induced expression of the AHR target genes Cyp1a1, Cyp1b1, and Tiparp. TiparpH532A mice given a single injection of 10 µg/kg TCDD, a nonlethal dose in Tiparp+/+ mice, did not survive beyond day 10. All Tiparp+/+ mice survived the 30-day treatment. TCDD-treated TiparpH532A mice displayed increased expression of AHR target genes, increased steatohepatitis and hepatotoxicity. Hepatic RNA-sequencing revealed 7-fold more differentially expressed genes in TiparpH532A mice than in Tiparp+/+ mice (4542 vs 647 genes) 6 days after TCDD treatment. Differentially expressed genes included genes involved in xenobiotic metabolism, lipid homeostasis and inflammation. Taken together, these data further support TIPARP as a critical negative regulator of AHR activity and show that loss of its catalytic activity is sufficient to increase sensitivity to TCDD-induced steatohepatitis and lethality. Since TIPARP inhibition has recently emerged as a potential anticancer therapy, the impact on AHR signaling, TCDD and polycyclic aromatic hydrocarbon toxicity will need to be carefully considered under conditions of therapeutic TIPARP inhibition.


Subject(s)
Chemical and Drug Induced Liver Injury , Polychlorinated Dibenzodioxins , Adenosine Diphosphate Ribose , Animals , Chemical and Drug Induced Liver Injury/genetics , Fibroblasts , Mice , Polychlorinated Dibenzodioxins/toxicity , Receptors, Aryl Hydrocarbon/genetics
16.
J Biol Chem ; 297(2): 100886, 2021 08.
Article in English | MEDLINE | ID: mdl-34146543

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a transcription factor activated by exogenous halogenated polycyclic aromatic hydrocarbon compounds, including the environmental toxin TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and naturally occurring dietary and endogenous compounds. The activated AHR enhances transcription of specific genes including phase I and phase II metabolism enzymes and other targets genes such as the TCDD-inducible poly(ADP-ribose) polymerase (TiPARP). The regulation of AHR activation is a dynamic process: immediately after transcriptional activation of the AHR by TCDD, the AHR is exported from the nucleus to the cytoplasm where it is subjected to proteasomal degradation. However, the mechanisms regulating AHR degradation are not well understood. Here, we studied the role of two enzymes reported to enhance AHR breakdown: the cullin 4B (CUL4B)AHR complex, an E3 ubiquitin ligase that targets the AHR and other proteins for ubiquitination, and TiPARP, which targets proteins for ADP-ribosylation, a posttranslational modification that can increase susceptibility to degradation. Using a WT mouse embryonic fibroblast (MEF) cell line and an MEF cell line in which CUL4B has been deleted (MEFCul4b-null), we discovered that loss of CUL4B partially prevented AHR degradation after TCDD exposure, while knocking down TiPARP in MEFCul4b-null cells completely abolished AHR degradation upon TCDD treatment. Increased TCDD-activated AHR protein levels in MEFCul4b-null and MEFCul4b-null cells in which TiPARP was knocked down led to enhanced AHR transcriptional activity, indicating that CUL4B and TiPARP restrain AHR action. This study reveals a novel function of TiPARP in controlling TCDD-activated AHR nuclear export and subsequent proteasomal degradation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cullin Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Polychlorinated Dibenzodioxins/toxicity , Proteasome Endopeptidase Complex/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Cells, Cultured , Environmental Pollutants/toxicity , Gene Expression Regulation , Gene Knockdown Techniques/methods , Mice , Proteolysis
17.
Cells ; 10(3)2021 03 11.
Article in English | MEDLINE | ID: mdl-33799807

ABSTRACT

ADP-ribosylation is a post-translational protein modification catalyzed by a family of proteins known as poly-ADP-ribose polymerases. PARP7 (TIPARP; ARTD14) is a mono-ADP-ribosyltransferase involved in several cellular processes, including responses to hypoxia, innate immunity and regulation of nuclear receptors. Since previous studies suggested that PARP7 was regulated by 17ß-estradiol, we investigated whether PARP7 regulates estrogen receptor α signaling. We confirmed the 17ß-estradiol-dependent increases of PARP7 mRNA and protein levels in MCF-7 cells, and observed recruitment of estrogen receptor α to the promoter of PARP7. Overexpression of PARP7 decreased ligand-dependent estrogen receptor α signaling, while treatment of PARP7 knockout MCF-7 cells with 17ß-estradiol resulted in increased expression of and recruitment to estrogen receptor α target genes, in addition to increased proliferation. Co-immunoprecipitation assays revealed that PARP7 mono-ADP-ribosylated estrogen receptor α, and mass spectrometry mapped the modified peptides to the receptor's ligand-independent transactivation domain. Co-immunoprecipitation with truncated estrogen receptor α variants identified that the hinge region of the receptor is required for PARP7-dependent mono-ADP-ribosylation. These results imply that PARP7-mediated mono-ADP-ribosylation may play an important role in estrogen receptor positive breast cancer.


Subject(s)
ADP-Ribosylation , Breast Neoplasms/enzymology , Cell Proliferation , Estrogen Receptor alpha/metabolism , Poly(ADP-ribose) Polymerases/metabolism , ADP-Ribosylation/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Estrogens/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nucleoside Transport Proteins , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Signal Transduction
18.
Cells ; 10(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33572475

ABSTRACT

Poly-ADP-ribose polymerases (PARPs) are enzymes that catalyze ADP-ribosylation and play critical roles in normal and disease settings. The PARP family member, PARP7, is a mono-ADP-ribosyltransferase that has been suggested to play a tumor suppressive role in breast, ovarian, and colorectal cancer. Here, we have investigated how androgen signaling regulates PARP7 homeostasis in prostate cancer cells, where PARP7 is a direct target gene of AR. We found that the PARP7 protein is extremely short-lived, with a half-life of 4.5 min. We show that in addition to its transcriptional regulation by AR, PARP7 is subject to androgen-dependent post-transcriptional regulation that increases its half-life to 25.6 min. This contrasts with PARP1, PARP2, PARP9, and PARP14, which do not display rapid turnover and are not regulated by androgen signaling. Androgen- and AR-dependent stabilization of PARP7 leads to accumulation in the nucleus, which we suggest is a major site of action. Mutations in the catalytic domain, the Cys3His1 zinc finger, and WWE (tryptophan-tryptophan-glutamate) domains in PARP7 each reduce the degradation rate of PARP7, suggesting the overall structure of the protein is tuned for its rapid turnover. Our finding that PARP7 is regulated by AR signaling both transcriptionally and post-transcriptionally in prostate cancer cells suggests the dosage of PARP7 protein is subject to tight regulation.


Subject(s)
ADP Ribose Transferases/metabolism , Androgens/metabolism , Gene Expression Regulation , Nucleoside Transport Proteins/metabolism , Prostatic Neoplasms/enzymology , ADP Ribose Transferases/chemistry , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Humans , Male , Mice , Nucleoside Transport Proteins/genetics , Prostatic Neoplasms/pathology , Protein Domains , Protein Stability , Receptors, Androgen/metabolism , Signal Transduction , Transcription, Genetic
19.
Elife ; 102021 01 21.
Article in English | MEDLINE | ID: mdl-33475085

ABSTRACT

PARP-7 (TiPARP) is a mono(ADP-ribosyl) transferase whose protein substrates and biological activities are poorly understood. We observed that PARP7 mRNA levels are lower in ovarian cancer patient samples compared to non-cancerous tissue, but PARP-7 protein nonetheless contributes to several cancer-related biological endpoints in ovarian cancer cells (e.g. growth, migration). Global gene expression analyses in ovarian cancer cells subjected to PARP-7 depletion indicate biological roles for PARP-7 in cell-cell adhesion and gene regulation. To identify the MARylated substrates of PARP-7 in ovarian cancer cells, we developed an NAD+ analog-sensitive approach, which we coupled with mass spectrometry to identify the PARP-7 ADP-ribosylated proteome in ovarian cancer cells, including cell-cell adhesion and cytoskeletal proteins. Specifically, we found that PARP-7 MARylates α-tubulin to promote microtubule instability, which may regulate ovarian cancer cell growth and motility. In sum, we identified an extensive PARP-7 ADP-ribosylated proteome with important roles in cancer-related cellular phenotypes.


Cancer is a complex illness where changes inside healthy cells causes them to grow and reproduce rapidly. Specialized proteins called enzymes ­ which regulate chemical reactions in the cell ­ often help cancer develop and spread through the body. One such enzyme called PARP-7 labels other proteins by attaching a chemical group which changes their behavior. However, it was unknown which proteins PARP-7 modifies and how this tag alters the actions of these proteins. To investigate this, Parsons, Challa, Gibson et al. developed a method to find and identify the proteins labelled by PARP-7 in ovarian cancer cells taken from patients and cultured in the laboratory. This revealed that PARP-7 labels hundreds of different proteins, including adhesion proteins which affect the connections between cells and cytoskeletal proteins which regulate a cell's shape and how it moves. One of the cytoskeletal proteins modified by PARP-7 is α-tubulin, which joins together with other tubulins to form long, tube-like structures known as microtubules. Parsons et al. found that when α-tubulin is labelled by PARP-7, it creates unstable microtubules that alter how the cancer cells grow and move. They discovered that depleting PARP-7 or mutating the sites where it modifies α-tubulin increased the stability of microtubules and slowed the growth of ovarian cancer cells. Ovarian cancer is the fifth leading cause of cancer-related deaths among women in the United States. A new drug which suppresses the activity of PARP-7 has recently been developed, and this drug could potentially be used to treat ovarian cancer patients with high levels of PARP-7. Clinical trials are ongoing to see how this drug affects the behavior of cancer cells in patients.


Subject(s)
ADP-Ribosylation , Microtubules/metabolism , Nucleoside Transport Proteins/genetics , Cell Line, Tumor , Female , Humans , Male , Nucleoside Transport Proteins/metabolism , Ovarian Neoplasms/metabolism
20.
Cell Chem Biol ; 27(7): 877-887.e14, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32679093

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) enzymes use nicotinamide adenine dinucleotide (NAD+) to modify up to seven different amino acids with a single mono(ADP-ribose) unit (MARylation deposited by PARP monoenzymes) or branched poly(ADP-ribose) polymers (PARylation deposited by PARP polyenzymes). To enable the development of tool compounds for PARP monoenzymes and polyenzymes, we have developed active site probes for use in in vitro and cellular biophysical assays to characterize active site-directed inhibitors that compete for NAD+ binding. These assays are agnostic of the protein substrate for each PARP, overcoming a general lack of knowledge around the substrates for these enzymes. The in vitro assays use less enzyme than previously described activity assays, enabling discrimination of inhibitor potencies in the single-digit nanomolar range, and the cell-based assays can differentiate compounds with sub-nanomolar potencies and measure inhibitor residence time in live cells.


Subject(s)
Fluorescent Dyes/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Binding, Competitive , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , HEK293 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , NAD/chemistry , NAD/metabolism , Nanoparticles/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL