Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Medicina (Kaunas) ; 60(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38929626

ABSTRACT

Background and Objectives: As modulators of the tumor microenvironment, macrophages have been extensively studied for their potential in developing anticancer strategies, particularly in regulating macrophage polarization towards an antitumorigenic (M1) phenotype rather than a protumorigenic (M2) one in various experimental models. Here, we evaluated the effect of PD98059, a mitogen-activated protein kinase kinase MAPKK MEK1-linked pathway inhibitor, on the differentiation and polarization of THP-1 monocytes in response to phorbol-12-myristate-13-acetate (PMA) under various culture conditions for tumor microenvironmental application. Materials and Methods: Differentiation and polarization of THP-1 were analyzed by flow cytometry and RT-PCR. Polarized THP-1 subsets with different treatment were compared by motility, phagocytosis, and so on. Results: Clearly, PMA induced THP-1 differentiation occurs in adherent culture conditions more than nonadherent culture conditions by increasing CD11b expression up to 90%, which was not affected by PD98059 when cells were exposed to PMA first (post-PD) but inhibited when PD98059 was treated prior to PMA treatment (pre-PD). CD11bhigh THP-1 cells treated with PMA and PMA-post-PD were categorized into M0 (HLA-DRlow and CD206low), M1 (HLA-DRhigh and CD206low), and M2 (HLA-DRlow and CD206high), resulting in an increased population of M1 macrophages. The transcription levels of markers of macrophage differentiation and polarization confirmed the increased M1 polarization of THP-1 cells with post-PD treatment rather than with PMA-only treatment. The motility and cytotoxicity of THP-1 cells with post-PD treatment were higher than THP-1 cells with PMA, suggesting that post-PD treatment enhanced the anti-tumorigenicity of THP-1 cells. Confocal microscopy and flow cytometry showed the effect of post-PD treatment on phagocytosis by THP-1 cells. Conclusions: We have developed an experimental model of macrophage polarization with THP-1 cells which will be useful for further studies related to the tumor microenvironment.


Subject(s)
Cell Differentiation , Flavonoids , Macrophages , Monocytes , Tetradecanoylphorbol Acetate , Humans , Macrophages/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Flavonoids/pharmacology , Flavonoids/therapeutic use , THP-1 Cells , Cell Differentiation/drug effects , Monocytes/drug effects , Flow Cytometry , Phagocytosis/drug effects
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021049

ABSTRACT

Objective To investigate the effect of ERK inhibitor PD98059 on the proliferation and differentia-tion of rat otocyst osteoblasts.Methods SD neonatal rat osteoblasts were extracted by two-step digestion with 0.25%pancreatin and type Ⅰ collagenase,and co-cultured with ERK inhibitor PD98059 at concentrations of 0 μmol/L,10 μmol/L,25 μmol/L and 50 μmol/L,respectively.Then,the osteoblasts proliferation of the four groups were assessed by EDU method for 4 consecutive days.The proliferation trend of each group was compared and analyzed.Osteoblasts were differentiated by β-sodium glycerophosphate,L-vitamin C and dexamethasone at concentrations of 10 mmol/L,50 ug/ml and 10-7 mol/L.After 24 h,the mRNA expression levels of osteogenic fac-tors which include Ocn,Bsp,Runx2,Bmp2,OPG and RANKL in each group were detected by RT-qPCR,and the differences of the results were analyzed.Results All the concentrations of ERK inhibitor PD98059 could inhibit the proliferation of osteoblasts in SD neonatal rat,and the inhibitory effect of PD98059 at concentrations of 10 μmol/L was significantly greater than that of the other three groups(P<0.05).In addition,all the concentrations of PD98059 could inhibit the expressions of Ocn,Bsp,Runx2,Bmp2 and OPG mRNA.The mRNA expressions of Ocn,Bsp,Runx2 and Bmp2 in 10 μmol/L PD98059 group were significantly lower than those in 0 μmol/L,25μmol/L and 50 μmol/L PD98059 groups(P<0.05).The mRNA expressions of OPG in 10 and 25 μmol/L PD98059 groups were significantly lower than those in 0 and 50 μmol/L PD98059 groups(P<0.05),and there was no significant difference between the first two groups(P>0.05).The CT value of RANKL mRNA was not detec-ted in all groups.Conclusion ERK pathway inhibitor PD98059 can both inhibit the proliferation and differentiation of osteoblasts in rat otocyst.Therefore,we speculate that ERK1/2-MAPK pathway may mediate the formation of tympanosclerosis by affecting the proliferation and differentiation of rat otocyst osteoblasts.

3.
Article in English | MEDLINE | ID: mdl-37491119

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disorder in which the myelin sheath covering the central nervous system axons is damaged or lost, disrupting action potential conduction and leading to various neurological complications. The pathogenesis of MS remains unclear, and no effective therapies are currently available. MS is triggered by environmental factors in genetically susceptible individuals. DNA damage and DNA repair failure have been proposed as MS genetic risk factors; however, inconsistent evidence has been found in multiple studies. Therefore, more investigations are needed to ascertain whether DNA damage/repair is altered in this disorder. In this context, therapies that prevent DNA damage or enhance DNA repair could be effective strategies for MS treatment. The overactivation of the extracellular-signal-related kinase 1 and 2 (Erk1/2) pathway can lead to DNA damage and has been linked to MS pathogenesis. In our study, we observed substantially elevated oxidative DNA damage and slower DNA repair rates in an experimentally autoimmune encephalomyelitis animal model of MS (EAE). Moreover, statistical decreases in oxidative DNA strand breaks and faster repair rates were observed in EAE animals injected with the Erk1/2 inhibitor PD98059 (PD). Moreover, the expression of several genes associated with DNA strand breaks and repair changed in EAE mice at both the mRNA and protein levels, as revealed by the RT2 Profiler PCR array and verified by RT-PCR and protein analyses. The treatment with PD mitigated these changes and improved DNA repair gene expression. Our results demonstrate clear associations between Erk1/2 activation, DNA damage/repair, and MS pathology, and further suggest that PD therapy may be a promising adjuvant therapeutic strategy.


Subject(s)
Antineoplastic Agents , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Mice, Inbred Strains , Antineoplastic Agents/therapeutic use , Signal Transduction , DNA Repair , DNA , Mice, Inbred C57BL
4.
J Cancer Res Ther ; 19(1): 45-56, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37006042

ABSTRACT

Background: γδ T cells for tumor cell immunotherapy has recently become a hot topic. Objective: To investigate the stimulation of expanded γδ T cells in vitro to kill liver cancer cells and its mechanism, and in vivo validation. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated and amplified. The proportion of γδ T cells in T cells was determined using flow cytometry. γδ T cells were selected as effector cells, and HepG2 cells as target cells in the cytotoxicity experiment. NKG2D blocker was used to block effector cells from identifying target cells, and PD98059 was used to block intracellular signaling pathways. The nude mice tumor model was established in two batches, the tumor growth curve was drawn, and the tumor formation effect was tested using small animal imager to verify the killing effect of γδ T cells. Results: The γδ T cells in the three experimental groups exhibited a large amount of amplification (P < 0.01). In the killing experiment, the killing rate of γδ T cells stimulated by zoledronate (ZOL) in the experimental group was significantly higher than that in the HDMAPP group and the Mycobacterium tuberculosis H37Ra strain (Mtb-Hag) group (P < 0.05). The blocking effect of PD98059 is stronger than that of the NKG2D blocker (P < 0.05). Among them, in the HDMAPP group, when the target ratio was 40:1, the NKG2D blocker exhibited a significant blocking effect (P < 0.05). Alternatively, in the ZOL group, when the effect ratio was 10:1, the effector cells were blocked significantly after treatment using PD98059 (P < 0.05). In vivo experiments verified the killing effect of γδ T cells. According to the tumor growth curve, there was a difference between the experimental and control groups after cell treatment (P < 0.05). Conclusion: ZOL has high amplification efficiency and a positive effect on killing tumor cells.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Leukocytes, Mononuclear/metabolism , Mice, Nude , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , Zoledronic Acid/pharmacology , T-Lymphocytes/metabolism
5.
Drug Chem Toxicol ; 46(2): 197-208, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34957889

ABSTRACT

Effects of Caffeic acid phenethyl ester (CAPE) and/or PD98059 (PD) on the gene expression of Caveolin-1 (CAV1) and reduced glutathione (GSH), malondialdehyde (MDA), copper-zinc superoxide dismutase (CuZn-SOD), and catalase (CAT) enzyme activities were investigated in an experimental chronic renal failure model in rats. Eighty Wistar rats were divided into eight groups for a 28-day study: Control, CsA (Cyclosporine A), CsA-V (CsA solvent), CsA + PD (CsA + PD98059), CsA + PD + CAPE, CsA + CAPE, CAPE-V (CAPE solvent), and PD-V (PD98059 solvent). Serum blood urea nitrogen and creatinine levels, as well as histopathological findings indicated the development of renal failure in the CsA group. Kidney GSH levels decreased while MDA levels, CuZn-SOD, and CAT activities increased significantly in the CsA group compared to control indicating oxidative stress. CAV1 gene expression significantly decreased in the CsA group compared to the control. PD98059 and CAPE applications made positive improvements in the levels of the parameters investigated. PD98059 and CAPE applications in CsA given animals increased GSH and CAV1 gene expressions and decreased CuZn-SOD and CAT levels compared to the CsA group. In conclusion, it was shown that PD98059 and CAPE could attenuate the effects of chronic renal failure, and CAV1 is suggested as a therapeutic target and the inhibition of the p44/42 MAPK pathway may be a new approach for the treatment of renal degenerations.


Subject(s)
Antioxidants , Kidney Failure, Chronic , Rats , Animals , Antioxidants/pharmacology , Caveolin 1/genetics , Rats, Wistar , Kidney Failure, Chronic/drug therapy , Kidney Failure, Chronic/genetics , Gene Expression , Superoxide Dismutase
6.
Theranostics ; 12(15): 6705-6722, 2022.
Article in English | MEDLINE | ID: mdl-36185611

ABSTRACT

Rationale: Müller cells play an essential role in maintaining the health of retinal photoreceptors. Dysfunction of stressed Müller cells often results in photoreceptor degeneration. However, how these cells communicate under stress and the signalling pathways involved remain unclear. In this study, we inhibited the MAPK (ERK1/2) signalling, mainly activated in Müller cells, evaluated the protective effects on the photoreceptors and further explored the signalling communication between stressed Müller cells and degenerating photoreceptors. Methods: We evaluated the changes of MAPK (ERK1/2) signalling and its downstream targets in human retinal explants treated with PD98059, a specific phosphorylated ERK1/2 inhibitor, by western blot and immunostaining. We further assessed photoreceptor degeneration by TUNEL staining and outer nuclear layer thickness. We also injected PD98059 into the eyes of mice exposed to photo-oxidative stress. We evaluated the protective effects on photoreceptor degeneration by optical coherence tomography (OCT) and electroretinography (ERG). The crosstalk between Müller cells and photoreceptors was further dissected based on the changes of transcription factors by RNA sequencing and protein profiles of multiple signalling pathways. Results: We found that MAPK (ERK1/2) signalling was mainly activated in Müller cells under stress, both ex vivo and in vivo. PD98059 inhibited the phosphorylation of ERK1/2, reduced expression of the gliotic marker glial fibrillary acidic protein (GFAP) in Müller cells and increased levels of the neuroprotective factor, interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors. Inhibition of pERK1/2 also reduced retinal photo-oxidative damage in mice retinas assessed by OCT and ERG. We also identified that the JAK/STAT3 signalling pathway might mediate signalling transduction from Müller cells to photoreceptors. Conclusion: MAPK (ERK1/2) deactivation through chemical inhibition, mainly in stressed Müller cells, can alleviate gliosis in Müller cells and restore the expression of IRBP in photoreceptors, which appears to prevent retinal degeneration. Our findings suggested a new way to prevent photoreceptor degeneration by manipulating the stress response in Müller cells.


Subject(s)
Retinal Degeneration , Animals , Ependymoglial Cells , Glial Fibrillary Acidic Protein/metabolism , Humans , MAP Kinase Signaling System , Mice , Retinal Degeneration/genetics , Transcription Factors/metabolism
7.
Eur J Pharmacol ; 933: 175258, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36096157

ABSTRACT

The purpose of the present study was to investigate the effects of ERK1/2 inhibition on both the amygdala and hippocampal structures, and to investigate its role in regulating memory for sexual information. This study utilized a cerebral ischemia reperfusion (IR) model to produce a stressful brain condition that highlights the possible involvement of a hippocampal GC/pERK1/2/BDNF pathway in the resulting sexual consequences of this ailment. Male Wistar rats were divided into four groups: (1) sham; (2) IR: subjected to 45 min of ischemia followed by 48 h of reperfusion; (3) PD98059: received PD98059 at 0.3 mg/kg, i.p.; (4) IR + PD98059. This study provides new evidence for cerebral IR-induced amygdala injury and the sexual impairments that are associated with motor and cognitive deficits in rats. These findings were correlated with histopathological changes that are defined by extensive neuronal loss in both the hippocampus and the amygdala. The current study postulated that the ERK inhibitor PD98059 could reverse IR-induced injury in the amygdala as well as reversing IR-induced sexual impairments. This hypothesis is supported by the ability of PD98059 to: (1) restore luteinizing hormone and testosterone levels; (2) increase sexual arousal and copulatory performance (as evidenced by modulating mount, intromission, ejaculation latencies, and post-ejaculatory intervals); (3) improve the histological profile in the amygdala that is associated with reduced glutamate levels, c-Fos expression, and elevated gamma aminobutyric acid levels. In conclusion, the present findings introduce pERK1/2 inhibition as a possible strategy for enhancing sexual activity in survivors of IR.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Brain Ischemia/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Infarction , Glutamic Acid , Luteinizing Hormone , MAP Kinase Signaling System , Male , Rats , Rats, Wistar , Reperfusion , Reperfusion Injury/metabolism , Testosterone , gamma-Aminobutyric Acid
8.
Regen Ther ; 21: 351-361, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36161099

ABSTRACT

Introduction: Ulcerative colitis (UC) is an inflammatory bowel disease characterized by repeated remissions and relapses. Immunosuppressive drugs have facilitated the induction and maintenance of remission in many patients with UC. However, immunosuppressive drugs cannot directly repair impaired intestinal mucosa and are insufficient for preventing relapse. Therefore, new treatment approaches to repair the damaged epithelium in UC have been attempted through the transplantation of intestinal organoids, which can be differentiated into mucosa by embedding in Matrigel, generated from patient-derived intestinal stem cells. The method, however, poses the challenge of yielding sufficient cells for UC therapy, and patient-derived cells might already have acquired pathological changes. In contrast, human induced pluripotent stem (iPS) cells generated from healthy individuals are infinitely proliferated and can be differentiated into target cells. Recently developed human iPS cell-derived intestinal organoids (HIOs) aim to generate organoids that closely resemble the adult intestine. However, no study till date has reported HIOs injected into in vivo inflammatory models, and it remains unclear whether HIOs with cells that closely resemble the adult intestine or with intestinal stem cells retain the better ability to repair tissue in colitis. Methods: We generated two types of HIOs via suspension culture with and without small-molecule compounds: HIOs that include predominantly more intestinal stem cells [HIO (A)] and those that include predominantly more intestinal epithelial and secretory cells [HIO (B)]. We examined whether the generated HIOs engrafted in vivo and compared their ability to accelerate recovery of the damaged tissue. Results: Findings showed that the HIOs expressed intestinal-specific markers such as caudal-type homeobox 2 (CDX2) and villin, and HIOs engrafted under the kidney capsules of mice. We then injected HIOs into colitis-model mice and found that the weight and clinical score of the mice injected with HIO (A) recovered earlier than that of the mice in the sham group. Further, the production of mucus and the expression of cell proliferation markers and tight junction proteins in the colon tissues of the HIO (A) group were restored to levels similar to those observed in healthy mice. However, neither HIO (A) nor HIO (B) could be engrafted into the colon. Conclusions: Effective cell therapy should directly repair tissue by engraftment at the site of injury. However, the difference in organoid property impacting the rate of tissue repair in transplantation without engraftment observed in the current study should be considered a critical consideration in the development of regenerative medicine using iPS-derived organoids.

9.
FASEB J ; 36(9): e22515, 2022 09.
Article in English | MEDLINE | ID: mdl-35997299

ABSTRACT

It has been shown that PP2A is critical for apoptosis in neural progenitor cells. However, it remains unknown whether PP2A is required for neuronal survival. To address this question, we generated forebrain-specific Ppp2cα knockout (KO) mice. We show that Ppp2cα KO mice display robust neuronal apoptosis and inflammatory responses in the postnatal cortex. Previous evidence has revealed that PD98059 is a potent ERK inhibitor and may protect the brain against cell death after cardiac arrest. To study whether PD98059 may have any effects on Ppp2cα KO mice, the latter was treated with this inhibitor. We demonstrated that the total number of cleaved caspase3 positive (+) cells in the cortex was significantly reduced in Ppp2cα KO mice treated with PD98059 compared with those without PD98059 treatment. We observed that the total number of IBA1+ cells in the cortex was significantly decreased in Ppp2cα KO mice treated with PD98059. Mechanistic analysis reveals that deletion of PP2Aca causes DNA damage, which may be attenuated by PD98059. Together, this study suggests that inhibition of ERK may be an effective strategy to reduce cell death in brain diseases with abnormal neuronal apoptosis.


Subject(s)
Neurons , Prosencephalon , Animals , Apoptosis , Cell Death , Mice , Mice, Knockout , Neurons/metabolism
10.
Biochim Biophys Acta Gen Subj ; 1866(11): 130215, 2022 11.
Article in English | MEDLINE | ID: mdl-35905921

ABSTRACT

BACKGROUND: Breast cancer is a heterogenous disease composed of multiple clonal populations and the mechanism by which the tumor microenvironment induces cancer stem cell plasticity is not fully understood. METHODS: MCF7 breast cancer cells were treated with macrophage conditioned medium (MɸCM). PD98059 and SB431542 were used for ERK and TGF-ßR inhibition respectively. Epithelial-mesenchymal transition (EMT) and cancer stem cell markers (CSC) were studied using qRT-PCR and flowcytometry. SCID mice were used for animal experiments. RESULTS: MɸCM- induced ERK/TGF-ß1 signaling led to enrichment of CSC and EMT in MCF7 cells and mammospheres. These effects were abrogated by both MEK inhibitor PD98059 (TGF-ß1 synthesis) and SB431542 (TGF-ß1 signaling). The increase in CSC was both hybrid (ALDH1+) and mesenchymal (CD44+ CD24- cells). Increase in hybrid E/M state was at a single cell level as confirmed by the increase in both claudin-1 (E) and vimentin (M). This did not have any growth advantage in SCID mice and monitoring of CSC and EMT markers before and after growth in SCID mice indicated reversal of these markers in tumor cells recovered from mice. Removal of MɸCM and neutralization of TNF-α, IL-6 and IL-1ß in MɸCM abrogated ERK phosphorylation, TGF-ß and CSC enrichment indicating the requirement of continuous signaling for maintenance. CONCLUSIONS: ERK signaling plays an important role in MɸCM- induced EMT and CSC plasticity which is completely reversible upon withdrawal of signals. GENERAL SIGNIFICANCE: Our experimental observations support the semi-independent nature of EMT-stemness connection which is very dynamic and reversible depending on the microenvironment.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms , Animals , Humans , MCF-7 Cells , Macrophages , Mice , Mice, SCID , Neoplastic Stem Cells , Transforming Growth Factor beta1
11.
Life Sci ; 300: 120569, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35472453

ABSTRACT

Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by involuntary bizarre movements, psychiatric symptoms, dementia, and early death. Several studies suggested neuroprotective activities of inosine; however its role in HD is yet to be elucidated. The current study aimed to demonstrate the neuroprotective effect of inosine in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats while investigating possible underlying mechanisms. Rats were randomly divided into five groups; group 1 received i.p. injections of 1% DMSO, whereas groups 2, 3, 4, and 5 received 3-NP (10 mg/kg, i.p.) for 14 days, concomitantly with inosine (200 mg/kg., i.p.) in groups 3, 4, and 5, SCH58261, a selective adenosine 2A receptor (A2AR) antagonist, (0.05 mg/kg, i.p.) in group 4, and PD98059, an extracellular signal-regulated kinase (ERK) inhibitor, (0.3 mg/kg, i.p.) in group 5. Treatment with inosine mitigated 3-NP-induced motor abnormalities and body weight loss. Moreover, inosine boosted the striatal brain-derived neurotrophic factor (BDNF) level, p-tropomyosin receptor kinase B (TrKB), p-ERK, and p-cAMP response element-binding protein (CREB) expression, which subsequently suppressed oxidative stress biomarkers (malondialdehyde and nitric oxide) and pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1ß) and replenished the glutathione content. Similarly, histopathological analyses revealed decreased striatal injury score, the expression of the glial fibrillary acidic protein, and neuronal loss after inosine treatment. These effects were attenuated by the pre-administration of SCH58261 or PD98059. In conclusion, inosine attenuated 3-NP-induced HD-like symptoms in rats, at least in part, via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Neuroprotective Agents , Animals , Brain-Derived Neurotrophic Factor/metabolism , Complement Factor B/metabolism , Complement Factor B/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Huntington Disease/chemically induced , Huntington Disease/drug therapy , Huntington Disease/metabolism , Inosine/pharmacology , Neuroprotective Agents/therapeutic use , Nitro Compounds , Propionates/pharmacology , Rats , Signal Transduction
12.
Chinese Critical Care Medicine ; (12): 1200-1205, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-991941

ABSTRACT

Objective:To explore the effect of extracellular signal-regulated kinase (ERK) inhibitor PD98059 on calpain-related proteins in the brain, and to understand the pathophysiological changes of calpain in cerebral ischemia/reperfusion injury (CIRI).Methods:Forty-two rats were divided into sham operation (Sham) group ( n = 6), model group ( n = 12), dimethyl sulfoxide (DMSO) control group ( n = 12), and PD98059 group ( n = 12) by random number table. The rat model of CIRI induced by cardiac arrest-cardiopulmonary resuscitation (CA-CPR) was reproduced by transesophageal electrical stimulation to induce ventricular fibrillation. In the Sham group, only the basic operations such as anesthesia, tracheal intubation, and arteriovenous catheterization were performed without CA-CPR. The rats in the DMSO control group and PD98059 group were injected with DMSO or PD98059 0.30 mg/kg via femoral vein, respectively, 30 minutes after the restoration of spontaneous circulation (ROSC), and rats in the Sham group and model group were given the same amount of normal saline. The duration of CPR, 24-hour survival rate and neurological deficit score (NDS) after ROSC were recorded. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe the pathological changes of the cerebral cortex. The expressions of phosphorylated ERK (p-ERK), ERK, calpastatin, calpain-1, and calpain-2 were detected by Western blotting. The co-expression of p-ERK and calpain-2 was detected by double immunofluorescence. Results:There were no significant differences in the duration of CPR and 24-hour survival rate among all groups. In the model group, the nuclei of the cerebral cortex were obviously deformed and pyknotic, cells vacuoles and tissues were arranged disorderly, Nissl corpuscles were significantly reduced, NDS scores were also significantly reduced, level of ERK phosphorylation was increased, and calpain-2 protein was significantly up-regulated compared with the Sham group. There was no significant difference in the above parameters between the DMSO control group and the model group. After intervention with PD98059, the pathological injury of brain tissue was significantly improved, Nissl corpuscles were significantly increased, the NDS score was significantly higher than that in the model group [75.0 (72.0, 78.0) vs. 70.0 (65.0, 72.0), P < 0.05], the level of ERK phosphorylation and calpain-2 protein expression were significantly lower than those in the model group [p-ERK (p-ERK/ERK): 0.65±0.12 vs. 0.92±0.05, calpain-2 protein (calpain-2/GAPDH): 0.73±0.10 vs. 1.07±0.14, both P < 0.05], while there was no significant difference in the expressions of calpastatin and calpain-1 in the cerebral cortex among all the groups. Double immunofluorescence staining showed that p-ERK and calpain-2 were co-expressed in cytosol and nucleus, and the co-expression rate of p-ERK and calpain-2 in the model group was significantly higher than that in the Sham group [(38.6±4.3)% vs. (9.2±3.5)%, P < 0.05], while it was significantly lowered in the PD98059 group compared with the model group [(18.2±7.0)% vs. (38.6±4.3)%, P < 0.05]. Conclusions:ERK together with calpain-2 participated in CIRI induced by CA-CPR. PD98059 inhibited the expression of calpain-2 and ERK phosphorylation. Therefore, ERK/calpain-2 may be a novel therapeutic target for CIRI.

13.
Drug Deliv Transl Res ; 12(7): 1684-1696, 2022 07.
Article in English | MEDLINE | ID: mdl-34635984

ABSTRACT

Endometrial cancer is the most common gynecological cancer that affects the female reproductive organs. The standard therapy for EC for the past two decades has been chemotherapy and/or radiotherapy. PD98059 is a reversible MEK inhibitor that was found in these studies to increase the cytotoxicity of paclitaxel (PTX) against human endometrial cancer cells (Hec50co) in a synergistic and dose-dependent manner. Additionally, while PD98059 arrested Hec50co cells at the G0/G1 phase, and PTX increased accumulation of cells at the G2/M phase, the combination treatment increased accumulation at both the G0/G1 and G2/M phases at low PTX concentrations. We recently developed poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) modified with polyethylene glycol (PEG) and coated with polyamidoamine (PAMAM) (referred to here as PGM NPs) which have favorable biodistribution profiles in mice, compared to PD98059 solution. Here, in order to enhance tissue distribution of PD98059, PD98059-loaded PGM NPs were prepared and characterized. The average size, zeta potential, and % encapsulation efficiency (%EE) of these NPs was approximately 184 nm, + 18 mV, and 23%, respectively. The PD98059-loaded PGM NPs released ~ 25% of the total load within 3 days in vitro. In vivo murine studies revealed that the pharmacokinetics and biodistribution profile of intravenous (IV) injected PD98059 was improved when delivered as PD98059-loaded PGM NPs as opposed to soluble PD98059. Further investigation of the in vivo efficacy and safety of this formulation is expected to emphasize the potential of its clinical application in combination with commercial PTX formulations against different cancers.


Subject(s)
Endometrial Neoplasms , Nanoparticles , Animals , Cell Line, Tumor , Drug Carriers , Endometrial Neoplasms/drug therapy , Female , Flavonoids , Humans , Mice , Mitogen-Activated Protein Kinase Kinases , Paclitaxel , Polyamines , Polyethylene Glycols , Protein Kinase Inhibitors , Tissue Distribution
14.
Int J Pharm ; 606: 120876, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34252520

ABSTRACT

Melanoma, the most malignant form of skin cancer, shows resistance to traditional anticancer drugs including paclitaxel (PTX). Furthermore, over 50% of melanoma cases express the BRAFV600E mutation which activates the MAPK pathway increasing cell proliferation and survival. In the current study, we investigated the capacity of the combination therapy of PTX and the MAPK inhibitor, PD98059, to enhance the cytotoxicity of PTX against melanoma and therefore improve treatment outcomes. Synergistic in vitro cytotoxicity was observed when soluble PTX and PD98059 were used to treat the A375 melanoma cell line as evidenced by a significant reduction in the cell viability and IC50 value for PTX. Then, in further studies, TPGS-emulsified PD98059-loaded PLGA nanoparticles (NPs) were prepared, characterized in vitro and assessed for therapeutic efficacy when used in combination with soluble PTX. The average particle size (180 nm d.), zeta potential (-34.8 mV), polydispersity index (0.081), encapsulation efficiency (20%), particle yield (90.8%), and drug loading (6.633 µg/mg) of the prepared NPs were evaluated. Also, cellular uptake and in vitro cytotoxicity studies were performed with these PD98059-loaded NPs and compared to soluble PD98059. The PD98059-loaded NPs were superior to soluble PD98059 in terms of both cellular uptake and in vitro cytotoxicity in A375 cells. In in vivo studies, using A375 challenged mice, we report improved survival in mice treated with soluble PTX and PD98059-loaded NPs. Our findings suggest the potential for using this combinatorial therapy in the management of patients with metastatic melanoma harboring the BRAF mutation as a means to improve survival outcomes.


Subject(s)
Melanoma , Nanoparticles , Animals , Cell Line, Tumor , Flavonoids , Humans , Mice , Mitogen-Activated Protein Kinase Kinases , Paclitaxel , Particle Size , Proto-Oncogene Proteins B-raf/genetics
15.
Int J Mol Sci ; 22(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066541

ABSTRACT

Breast cancer is one of the major causes of deaths due to cancer, especially in women. The crucial barrier for breast cancer treatment is resistance to radiation therapy, one of the important local regional therapies. We previously established and characterized radio-resistant MDA-MB-231 breast cancer cells (RT-R-MDA-MB-231 cells) that harbor a high expression of cancer stem cells (CSCs) and the EMT phenotype. In this study, we performed antibody array analysis to identify the hub signaling mechanism for the radiation resistance of RT-R-MDA-MB-231 cells by comparing parental MDA-MB-231 (p-MDA-MB-231) and RT-R-MDA-MB-231 cells. Antibody array analysis unveiled that the MAPK1 protein was the most upregulated protein in RT-R-MDA-MB-231 cells compared to in p-MDA-MB-231 cells. The pathway enrichment analysis also revealed the presence of MAPK1 in almost all enriched pathways. Thus, we used an MEK/ERK inhibitor, PD98059, to block the MEK/ERK pathway and to identify the role of MAPK1 in the radio-resistance of RT-R-MDA-MB-231 cells. MEK/ERK inhibition induced cell death in both p-MDA-MB-231 and RT-R-MDA-MB-231 cells, but the death mechanism for each cell was different; p-MDA-MB-231 cells underwent apoptosis, showing cell shrinkage and PARP-1 cleavage, while RT-R-MDA-MB-231 cells underwent necroptosis, showing mitochondrial dissipation, nuclear swelling, and an increase in the expressions of CypA and AIF. In addition, MEK/ERK inhibition reversed the radio-resistance of RT-R-MDA-MB-231 cells and suppressed the increased expression of CSC markers (CD44 and OCT3/4) and the EMT phenotype (ß-catenin and N-cadherin/E-cadherin). Taken together, this study suggests that activated ERK signaling is one of the major hub signals related to the radio-resistance of MDA-MB-231 breast cancer cells.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/radiotherapy , MAP Kinase Signaling System , Radiation Tolerance , Apoptosis/drug effects , Apoptosis Inducing Factor/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Shape/drug effects , Cell Survival/drug effects , Clone Cells , Cyclophilin A/metabolism , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , MAP Kinase Signaling System/drug effects , Necroptosis/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Poly(ADP-ribose) Polymerases/metabolism , Protein Interaction Maps/drug effects , Protein Kinase Inhibitors/pharmacology , Proteomics , Radiation Tolerance/drug effects
16.
Exp Ther Med ; 21(4): 371, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33732344

ABSTRACT

It has been shown that flickering light can affect the development of eyeballs. However, the exact mechanism remains unclear. The ERK1/2-MMP-2 pathway is a classic pathway involved in the modulation of the extracellular matrix (ECM) in cancer tissues. However, to the best of our knowledge, the role of this pathway in modulating the scleral ECM in myopia has not been previously examined. The present study aimed to determine the effects of the ERK1/2-MMP-2 pathway on the formation of flickering light-induced myopia (FLM). Guinea pigs were raised under illumination at a flash rate of 0.5 Hz for 6 weeks to induce FLM. Peribulbar injections of dimethylsulfoxide or PD98059 (an inhibitor of phospho-ERK1/2) were administered starting at the third week of FLM modeling. Refraction was measured prior to and following treatments. The thickness of the posterior sclera (PS) was measured under a light microscope following H&E staining. The mRNA levels of MMP-2 were detected by the reverse transcription-quantitative PCR assay. The expression levels of MMP-2 and ERK1/2 were assayed by western blot and immunohistochemical analyses. Following 6 weeks of treatment, the refraction of the FLM group became more myopic compared with that of the control group, while PD98059 treatment inhibited the changes noted in the refraction. A marked reduction in the thickness of PS was observed in the FLM group, while PD98059 inhibited the remodeling of PS. In addition, the expression levels of MMP-2 and protein levels of phospho-ERK1/2 were increased in the FLM group, while PD98059 significantly inhibited MMP-2 mRNA and protein levels. These results indicated that ERK1/2-MMP-2 may be involved in the formation of FLM in guinea pigs by regulating the remodeling of PS.

17.
Pharmacol Res ; 165: 105412, 2021 03.
Article in English | MEDLINE | ID: mdl-33412276

ABSTRACT

A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.


Subject(s)
Gastrointestinal Agents/therapeutic use , Intestinal Diseases/drug therapy , Protein Processing, Post-Translational/drug effects , Animals , Gastrointestinal Agents/pharmacology , Humans
18.
Int Immunopharmacol ; 93: 107377, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33517223

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) is the leading cause of poor neurological prognosis after cardiopulmonary resuscitation (CPR). We previously reported that the extracellular signal-regulated kinase (ERK) activation mediates CIRI. Here, we explored the potential ERK/calpain-2 pathway role in CIRI using a rat model of cardiac arrest (CA). METHODS: Adult male Sprague-Dawley rats suffered from CA/CPR-induced CIRI, received saline, DMSO, PD98059 (ERK1/2 inhibitor, 0.3 mg/kg), or MDL28170 (calpain inhibitor, 3.0 mg/kg) after spontaneous circulation recovery. The survival rate and the neurological deficit score (NDS) were utilized to assess the brain function. Hematoxylin stain, Nissl staining, and transmission electron microscopy were used to evaluate the neuron injury. The expression levels of p-ERK, ERK, calpain-2, neuroinflammation-related markers (GFAP, Iba1, IL-1ß, TNF-α), and necroptosis proteins (TNFR1, RIPK1, RIPK3, p-MLKL, and MLKL) in the brain tissues were determined by western blotting and immunohistochemistry. Fluorescent multiplex immunohistochemistry was used to analyze the p-ERK, calpain-2, and RIPK3 co-expression in neurons, and RIPK3 expression levels in microglia or astrocytes. RESULTS: At 24 h after CA/CPR, the rats in the saline-treated and DMSO groups presented with injury tissue morphology, low NDS, ERK/calpain-2 pathway activation, and inflammatory cytokine and necroptosis protein over-expression in the brain tissue. After PD98059 and MDL28170 treatment, the brain function was improved, while inflammatory response and necroptosis were suppressed by ERK/calpain-2 pathway inhibition. CONCLUSION: Inflammation activation and necroptosis involved in CA/CPR-induced CIRI were regulated by the ERK/calpain-2 signaling pathway. Inhibition of that pathway can reduce neuroinflammation and necroptosis after CIRI in the CA model rats.


Subject(s)
Brain Ischemia/immunology , Calpain/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Heart Arrest/immunology , Reperfusion Injury/immunology , Animals , Calpain/immunology , Dipeptides/pharmacology , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/immunology , Flavonoids/pharmacology , Inflammation/immunology , Male , Necroptosis , Rats, Sprague-Dawley , Signal Transduction
19.
Pharmacol Res ; 165: 105467, 2021 03.
Article in English | MEDLINE | ID: mdl-33515704

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked ß-N-acetylglucosamine transferase (OGT) and O-linked ß-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.


Subject(s)
Cardiovascular Agents/administration & dosage , Cardiovascular Diseases/drug therapy , Drug Delivery Systems/methods , Enzyme Inhibitors/administration & dosage , Protein Processing, Post-Translational/drug effects , Acetylglucosamine/antagonists & inhibitors , Acetylglucosamine/metabolism , Acetylglucosaminidase/antagonists & inhibitors , Acetylglucosaminidase/metabolism , Acylation/drug effects , Acylation/physiology , Animals , Antigens, Neoplasm/metabolism , Cardiovascular Diseases/metabolism , Glycosylation/drug effects , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/metabolism , Humans , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational/physiology , beta-N-Acetylhexosaminidases/antagonists & inhibitors , beta-N-Acetylhexosaminidases/metabolism
20.
Behav Brain Res ; 403: 113132, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33485873

ABSTRACT

Memory formation depends upon several parametric training conditions. Among them, trial number and inter-trial interval (ITI) are key factors to induce long-term retention. However, it is still unclear how individual training trials contribute to mechanisms underlying memory formation and stabilization. Contextual conditioning in Neohelice granulata has traditionally elicited associative long-term memory (LTM) after 15 spaced (ITI = 3 min) trials. Here, we show that LTM in crabs can be induced after only two training trials by increasing the ITI to 45 min (2t-LTM) and maintaining the same training duration as in traditional protocols. This newly observed LTM was preserved for at least 96 h, exhibiting protein synthesis dependence during consolidation and reconsolidation as well as context-specificity. Moreover, we demonstrate that 2t-LTM depends on inter-trial and post-training ERK activation showing a faster phosphorylation after the second trial compared to the first one. In summary, we present a new training protocol in crabs through a reduced number of trials showing associative features similar to traditional spaced training. This novel protocol allows for intra-training manipulation and the assessment of individual trial contribution to LTM formation.


Subject(s)
Behavior, Animal/physiology , Brachyura/physiology , Memory Consolidation/physiology , Memory, Long-Term/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Practice, Psychological , Protein Kinase Inhibitors/pharmacology , Protein Synthesis Inhibitors/pharmacology , Animals , Cycloheximide/pharmacology , Dimethyl Sulfoxide/administration & dosage , Flavonoids/pharmacology , Male , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Protein Synthesis Inhibitors/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL