Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(12)2022 12 16.
Article in English | MEDLINE | ID: mdl-36553646

ABSTRACT

Glyprolines are Gly-Pro (GP)- or Pro-Gly (PG)-containing biogenic peptides. These peptides can act as neutrophil chemoattractants, or atheroprotective, anticoagulant, and neuroprotective agents. The Pro-Gly-Pro (PGP) tripeptide is an active factor of resistance to the biodegradation of peptide drugs. The synthetic Semax peptide, which includes Met-Glu-His-Phe (MEHF) fragments of adrenocorticotropic hormone and the C-terminal tripeptide PGP, serves as a neuroprotective drug for the treatment of ischemic stroke. Previously, we revealed that Semax mostly prevented the disruption of the gene expression pattern 24 h after a transient middle cerebral artery occlusion (tMCAO) in a rat brain model. The genes of this pattern were grouped into an inflammatory cluster (IC) and a neurotransmitter cluster (NC). Here, using real-time RT-PCR, the effect of other PGP-containing peptides, PGP and Pro-Gly-Pro-Leu (PGPL), on the expression of a number of genes in the IC and NC was studied 24 h after tMCAO. Both the PGP and PGPL peptides showed Semax-unlike effects, predominantly without changing gene expression 24 h after tMCAO. Moreover, there were IC genes (iL1b, iL6, and Socs3) for PGP, as well as IC (iL6, Ccl3, Socs3, and Fos) and NC genes (Cplx2, Neurod6, and Ptk2b) for PGPL, that significantly changed in expression levels after peptide administration compared to Semax treatment under tMCAO conditions. Furthermore, gene enrichment analysis was carried out, and a regulatory gene network was constructed. Thus, the spectra of the common and unique effects of the PGP, PGPL, and Semax peptides under ischemia-reperfusion were distinguished.


Subject(s)
Brain Ischemia , Interleukin-6 , Rats , Animals , Rats, Wistar , Peptides/genetics , Peptides/pharmacology , Peptides/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Brain Ischemia/metabolism , Cerebral Infarction
2.
Carbohydr Polym ; 101: 1205-15, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24299893

ABSTRACT

Enzymatic fingerprinting was applied to sugar beet pectins (SBPs) modified by either plant or fungal pectin methyl esterases and alkali catalyzed de-esterification to reveal the ester distributions over the pectin backbone. A simultaneous pectin lyase (PL) treatment to the commonly used endo-polygalacturonase (endo-PG) degradation showed to be effective in degrading both high and low methylesterified and/or acetylated homogalaturonan regions of SBP simultaneously. Using LC-HILIC-MS/ELSD, we studied in detail all the diagnostic oligomers present, enabling us to discriminate between differently prepared sugar beet pectins having various levels of methylesterification and acetylation. Furthermore, distinction between commercially extracted and de-esterified sugar beet pectin having different patterns of substitution was achieved by using novel descriptive pectin parameters. In addition to DBabs approach for nonmethylesterified sequences degradable by endo-PG, the "degree of hydrolysis" (DHPG) representing all partially saturated methylesterified and/or acetylated galacturonic acid (GalA) moieties was introduced as a new parameter. Consequently, the description DHPL has been introduced to quantify all esterified unsaturated GalA oligomers.


Subject(s)
Beta vulgaris/chemistry , Carboxylic Ester Hydrolases/metabolism , Pectins/chemistry , Acetylation , Aspergillus/enzymology , Hydrolysis , Oligosaccharides/analysis , Pectins/metabolism , Sordariales/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL