Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 965
Filter
1.
Mol Cell ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39366376

ABSTRACT

The spatial organization of inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals underlies their versatility. Low stimulus intensities evoke Ca2+ puffs, localized Ca2+ signals arising from a few IP3 receptors (IP3Rs) within a cluster tethered beneath the plasma membrane. More intense stimulation evokes global Ca2+ signals. Ca2+ signals propagate regeneratively as the Ca2+ released stimulates more IP3Rs. How is this potentially explosive mechanism constrained to allow local Ca2+ signaling? We developed methods that allow IP3 produced after G-protein coupled receptor (GPCR) activation to be intercepted and replaced by flash photolysis of a caged analog of IP3. We find that phosphatidylinositol 4,5-bisphosphate (PIP2) primes IP3Rs to respond by partially occupying their IP3-binding sites. As GPCRs stimulate IP3 formation, they also deplete PIP2, relieving the priming stimulus. Loss of PIP2 resets IP3R sensitivity and delays the transition from local to global Ca2+ signals. Dual regulation of IP3Rs by PIP2 and IP3 through GPCRs controls the transition from local to global Ca2+ signals.

2.
Plant Physiol Biochem ; 216: 109137, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39357201

ABSTRACT

Actin cytoskeleton and reactive oxygen species are principal determinants of root hair polarity and tip growth. Loss of function in RESPIRATORY BURST OXIDASE HOMOLOG C/ROOT HAIR DEFECTIVE 2 (AtRBOHC/RHD2), an NADPH oxidase emitting superoxide to the apoplast, and in ACTIN 2, a vegetative actin isovariant, in rhd2-1 and der1-3 mutants, respectively, lead to similar defects in root hair formation and elongation Since early endosome-mediated polar localization of AtRBOHC/RHD2 depends on actin cytoskeleton, comparing the proteome-wide consequences of both mutations might be of eminent interest. Therefore, we employed a differential proteomic analysis of Arabidopsis rhd2-1 and der1-3 mutants. Both mutants exhibited substantial alterations in abundances of stress-related proteins. Notably, plasma membrane (PM)-localized PIP aquaporins showed contrasting abundance patterns in the mutants compared to wild-types. Drought-responsive proteins were mostly downregulated in rhd2-1 but upregulated in der1-3. Proteomic data suggest that opposite to der1-3, altered vesicular transport in rhd2-1 mutant likely contributes to the deregulation of PM-localized proteins, including PIPs. Moreover, lattice light sheet microscopy revealed reduced actin dynamics in rhd2-1 roots, a finding contrasting with previous reports on der1-3 mutant. Phenotypic experiments demonstrated a drought stress susceptibility in rhd2-1 and resistance in der1-3. Thus, mutations in AtRBOHC/RHD2 and ACTIN2 cause similar root hair defects, but they differently affect the actin cytoskeleton and vesicular transport. Reduced actin dynamics in rhd2-1 mutant is accompanied by alteration of vesicular transport proteins abundance, likely leading to altered protein delivery to PM, including aquaporins, thereby significantly affecting drought stress responses.

3.
Plant Commun ; : 101135, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39277790

ABSTRACT

Plasma membrane intrinsic proteins (PIPs), a subclass of aquaporins (AQPs), play an important role in plant immunity by acting as H2O2 transporters. Their homeostasis is mostly maintained by C-terminal serine phosphorylation. However, the kinases that phosphorylate PIPs and manipulate their turnover are largely unknown. Here, we found that Arabidopsis thaliana PIP2;7 positively regulates plant immunity by transporting H2O2. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28) directly interacts with and phosphorylates PIP2;7 at Ser273/276 to induce its degradation. During pathogen infection, CPK28 dissociated from PIP2;7 and destabilized, leading to PIP2;7 accumulation. As a counter, oomycete pathogens produce the conserved kinase effectors that stably bind and mediate the phosphorylate of PIP2;7 to induce its degradation. Our study identifies PIP2;7 as a novel substrate of CPK28 and its protein stability is negatively regulated by CPK28. Such phosphorylation could be mimicked by Phytophthora kinase effectors to promote infection. Accordingly, we developed a strategy to combat oomycete infection by using a phosphorylation-resistant PIP2;7S273/276A mutant. The strategy only allows accumulation of PIP2;7S273/276A during infection to limit potential side effects on normal plant growth.

4.
J Hand Surg Am ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340524

ABSTRACT

Combined distal interphalangeal joint (DIP) arthrodesis with proximal interphalangeal joint (PIP) arthroplasty or arthrodesis presents unique challenges. Although less common than isolated surgery for the DIP and PIP joints, with an aging population, combined DIP and PIP procedures are an increasingly encountered occurrence. Anatomical and morphological studies have provided length and width measurement standards for the middle and distal phalanges, allowing for planning to assess the compatibility of strategies. Besides reviewing anatomical studies to provide length and width guidelines for hardware placement, we will also discuss optimal hardware combinations for combined surgical intervention in the DIP and PIP joints. Conflict may exist between hardware used for the DIP arthrodesis and implants used for the PIP arthroplasty. As an example, if K-wires are used for DIP arthrodesis, any intervention in the PIP joint will be compatible. However, if headless screws are used for DIP arthrodesis, these should ideally not reach proximal to the midpoint of the middle phalanx. Other techniques, such as single or multiple oblique screws, and tension bands are compatible with PIP arthroplasty. Hence, options for management of the PIP joint are dependent on the technique used for DIP arthrodesis.

5.
Eur J Pharm Biopharm ; : 114483, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245358

ABSTRACT

This publication is the first to report current, global, pediatric oral extemporaneous compounding practices. Complete survey responses were received from 470 participants actively involved in compounding across all the World Health Organization (WHO) regions. The survey addressed oral formulation of extemporaneous liquids, including the use of commercial or in-house vehicles, flavoring excipients, source of formulation recipes, and beyond use dates (BUDs). Over 90% of the survey participants prepared oral liquids. Solid dosage forms, comprising capsules and powder papers (sachets) were also frequently prepared for children, albeit to a lesser extent. The top 20 active pharmaceutical ingredients compounded for children, globally, were: omeprazole, captopril, spironolactone, propranolol, furosemide, phenobarbital, hydrochlorothiazide, ursodeoxycholic acid, sildenafil, melatonin, clonidine, enalapril, dexamethasone, baclofen, caffeine, chloral hydrate, trimethoprim, atenolol, hydrocortisone, carvedilol and prednisolone. Diuretics, drugs for acid-related disorders, and beta-blockers were the top three most frequently compounded classes per the WHO Anatomical Therapeutic Chemical (ATC) classification system. The principal need identified for the practice of extemporaneous compounding for children was the development of an international, open-access formulary that includes validated formulations, as well as updated compounding literature and guidelines. Furthermore, improved access to data from stability studies to allow compounding of formulations with extended BUDs.

6.
Chem Phys Lipids ; 264: 105424, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098579

ABSTRACT

As key mediators in a wide array of signaling events, phosphoinositides (PIPs) orchestrate the recruitment of proteins to specific cellular locations at precise moments. This intricate spatiotemporal regulation of protein activity often necessitates the localized enrichment of the corresponding PIP. We investigate the extent and thermal stabilities of phosphatidylinositol-4-phosphate (PI(4)P), phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2 and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) clusters with calcium and magnesium ions. We observe negligible or minimal clustering of all examined PIPs in the presence of Mg2+ ions. While PI(4)P shows in the presence of Ca2+ no clustering, PI(4,5)P2 forms with Ca2+ strong clusters that exhibit stablity up to at least 80°C. The extent of cluster formation for the interaction of PI(3,4,5)P3 with Ca2+ is less than what was observed for PI(4,5)P2, yet we still observe some clustering up to 80°C. Given that cholesterol has been demonstrated to enhance PIP clustering, we examined whether bivalent cations and cholesterol synergistically promote PIP clustering. We found that the interaction of Mg2+ or Ca2+ with PI(4)P remains extraordinarily weak, even in the presence of cholesterol. In contrast, we observe synergistic interaction of cholesterol and Ca2+ with PI(4,5)P2. Also, in the presence of cholesterol, the interaction of Mg2+ with PI(4,5)P2 remains weak. PI(3,4,5)P3 does not show strong clustering with cholesterol for the experimental conditions of our study and the interaction with Ca2+ and Mg2+ was not influenced by the presence of cholesterol.


Subject(s)
Calcium , Magnesium , Phosphatidylinositols , Temperature , Phosphatidylinositols/chemistry , Calcium/chemistry , Magnesium/chemistry , Cations, Divalent/chemistry , Phosphatidylinositol Phosphates/chemistry , Phosphatidylinositol Phosphates/metabolism
7.
J Virol ; 98(9): e0064924, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39136462

ABSTRACT

Human immunodeficiency virus (HIV)-1 assembly is initiated by Gag binding to the inner leaflet of the plasma membrane (PM). Gag targeting is mediated by its N-terminally myristoylated matrix (MA) domain and PM phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Upon Gag assembly, envelope (Env) glycoproteins are recruited to assembly sites; this process depends on the MA domain of Gag and the Env cytoplasmic tail. To investigate the dynamics of Env recruitment, we applied a chemical dimerizer system to manipulate HIV-1 assembly by reversible PI(4,5)P2 depletion in combination with super resolution and live-cell microscopy. This approach enabled us to control and synchronize HIV-1 assembly and track Env recruitment to individual nascent assembly sites in real time. Single virion tracking revealed that Gag and Env are accumulating at HIV-1 assembly sites with similar kinetics. PI(4,5)P2 depletion prevented Gag PM targeting and Env cluster formation, confirming Gag dependence of Env recruitment. In cells displaying pre-assembled Gag lattices, PI(4,5)P2 depletion resulted in the disintegration of the complete assembly domain, as not only Gag but also Env clusters were rapidly lost from the PM. These results argue for the existence of a Gag-induced and -maintained membrane micro-environment, which attracts Env. Gag cluster dissociation by PI(4,5)P2 depletion apparently disrupts this micro-environment, resulting in the loss of Env from the former assembly domain.IMPORTANCEHuman immunodeficiency virus (HIV)-1 assembles at the plasma membrane of infected cells, resulting in the budding of membrane-enveloped virions. HIV-1 assembly is a complex process initiated by the main structural protein of HIV-1, Gag. Interestingly, HIV-1 incorporates only a few envelope (Env) glycoproteins into budding virions, although large Env accumulations surrounding nascent Gag assemblies are detected at the plasma membrane of HIV-expressing cells. The matrix domain of Gag and the Env cytoplasmatic tail play a role in Env recruitment to HIV-1 assembly sites and its incorporation into nascent virions. However, the regulation of these processes is incompletely understood. By combining a chemical dimerizer system to manipulate HIV-1 assembly with super resolution and live-cell microscopy, our study provides new insights into the interplay between Gag, Env, and host cell membranes during viral assembly and into Env incorporation into HIV-1 virions.


Subject(s)
Cell Membrane , HIV-1 , Phosphatidylinositol 4,5-Diphosphate , Virus Assembly , env Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus , HIV-1/physiology , HIV-1/metabolism , Humans , gag Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , Cell Membrane/metabolism , Cell Membrane/virology , Phosphatidylinositol 4,5-Diphosphate/metabolism , env Gene Products, Human Immunodeficiency Virus/metabolism , env Gene Products, Human Immunodeficiency Virus/genetics , Virion/metabolism , HeLa Cells , Microscopy/methods
8.
J Biol Chem ; 300(9): 107631, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098525

ABSTRACT

The ability for cells to localize and activate peripheral membrane-binding proteins is critical for signal transduction. Ubiquitously important in these signaling processes are phosphatidylinositol phosphate (PIP) lipids, which are dynamically phosphorylated by PIP lipid kinases on intracellular membranes. Functioning primarily at the plasma membrane, phosphatidylinositol-4-phosphate 5-kinases (PIP5K) catalyzes the phosphorylation of PI(4)P to generate most of the PI(4,5)P2 lipids found in eukaryotic plasma membranes. Recently, we determined that PIP5K displays a positive feedback loop based on membrane-mediated dimerization and cooperative binding to its product, PI(4,5)P2. Here, we examine how two motifs contribute to PI(4,5)P2 recognition to control membrane association and catalysis of PIP5K. Using a combination of single molecule TIRF microscopy and kinetic analysis of PI(4)P lipid phosphorylation, we map the sequence of steps that allow PIP5K to cooperatively engage PI(4,5)P2. We find that the specificity loop regulates the rate of PIP5K membrane association and helps orient the kinase to more effectively bind PI(4,5)P2 lipids. After correctly orienting on the membrane, PIP5K transitions to binding PI(4,5)P2 lipids near the active site through a motif previously referred to as the substrate or PIP-binding motif (PIPBM). The PIPBM has broad specificity for anionic lipids and serves a role in regulating membrane association in vitro and in vivo. Overall, our data supports a two-step membrane-binding model where the specificity loop and PIPBM act in concert to help PIP5K orient and productively engage anionic lipids to drive the positive feedback during PI(4,5)P2 production.


Subject(s)
Cell Membrane , Phosphatidylinositol 4,5-Diphosphate , Phosphotransferases (Alcohol Group Acceptor) , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphorylation , Cell Membrane/metabolism , Humans , Feedback, Physiological , Kinetics , Amino Acid Motifs , Protein Binding
9.
Cell Calcium ; 123: 102932, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39094223

ABSTRACT

Transient receptor potential canonical 3 (TRPC3) is a calcium-permeable, non-selective cation channel known to be regulated by components of the phospholipase C (PLC)-mediated signaling pathway, such as Ca2+, diacylglycerol (DAG) and phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). However, the molecular gating mechanism by these regulators is not yet fully understood, especially its regulation by PI(4,5)P2, despite the importance of this channel in cardiovascular pathophysiology. Recently, Clarke et al. (2024) have reported that PI(4,5)P2 is a positive modulator for TRPC3 using molecular dynamics simulations and patch-clamp techniques. They have demonstrated a multistep gating mechanism of TRPC3 with the binding of PI(4,5)P2 to the lipid binding site located at the pre-S1/S1 nexus, and the propagation of PI(4,5)P2 sensing to the pore domain via a salt bridge between the TRP helix and the S4-S5 linker.


Subject(s)
Phosphatidylinositol 4,5-Diphosphate , TRPC Cation Channels , Animals , Humans , Molecular Dynamics Simulation , Phosphatidylinositol 4,5-Diphosphate/metabolism , TRPC Cation Channels/metabolism , TRPC Cation Channels/chemistry
10.
Protein Sci ; 33(9): e5093, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39180489

ABSTRACT

RTEL1 is an essential DNA helicase which plays an important role in various aspects of genome stability, from telomere metabolism to DNA replication, repair and recombination. RTEL1 has been implicated in a number of genetic diseases and cancer development, including glioma, breast, lung and gastrointestinal tumors. RTEL1 is a FeS helicase but, in addition to the helicase core, it comprises a long C-terminal region which includes a number of folded domains connected by intrinsically disordered loops and mediates RTEL1 interaction with factors involved in pivotal cellular pathways. However, information on the architecture and the function of this region is still limited. We expressed and purified a variety of fragments encompassing the folded domains and the unstructured regions. We determined the crystal structure of the second repeat, confirming that it has a fold similar to the harmonin homology domains. SAXS data provide low-resolution information on all the fragments and suggest that the presence of the RING domain affects the overall architecture of the C-terminal region, making the structure significantly more compact. NMR data provide experimental information on the interaction between PCNA and the RTEL1 C-terminal region, revealing a putative low-affinity additional site of interaction. A biochemical analysis shows that the C-terminal region, in addition to a preference for telomeric RNA and DNA G-quadruplexes, has a high affinity for R-loops and D-loops, consistent with the role played by the RTEL1 helicase in homologous recombination, telomere maintenance and preventing replication-transcription conflicts. We further dissected the contribution of each domain in binding different substrates.


Subject(s)
DNA Helicases , Humans , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Helicases/genetics , Crystallography, X-Ray , Models, Molecular , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Protein Domains , Scattering, Small Angle
11.
Cureus ; 16(7): e65326, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39184657

ABSTRACT

Fractures of the proximal interphalangeal (PIP) joint with fragment displacement should be promptly repaired after injury, though this does not ensure the return of pre-injury finger function. This article presents the case of a 29-year-old patient who sustained an injury to the fourth finger of his right hand, resulting in an open fracture of the distal and shaft of the proximal phalanx involving the PIP joint and partial damage to the finger extensor mechanism. Immediately post injury, the fracture was realigned and stabilized with Kirschner wires (K-wires). Three years later, due to post-traumatic degenerative disease, the patient required further surgical intervention and was diagnosed with type III according to the modified Kellgren and Lawrence scale. The decision was made to perform a partial arthroplasty of the PIP joint. The implantation of the PIP prosthesis in a patient with post-traumatic degenerative disease can restore the correct range of flexion movement, realign the fourth digit, and eliminate pain. However, this treatment method may pose a risk of a slight limitation in the range of extension motion in the joint.

12.
Methods Mol Biol ; 2828: 147-157, 2024.
Article in English | MEDLINE | ID: mdl-39147976

ABSTRACT

Normal-sized cells of Dictyostelium build up a front-tail polarity when they respond to a gradient of chemoattractant. To challenge the polarity-generating system, cells are fused to study the chemotactic response of oversized cells that extend multiple fronts toward the source of attractant. An aspect that can be explored in these cells is the relationship of spontaneously generated actin waves to actin reorganization in response to chemoattractant.


Subject(s)
Chemotaxis , Dictyostelium , Dictyostelium/physiology , Dictyostelium/cytology , Chemotactic Factors/pharmacology , Chemotactic Factors/metabolism , Actins/metabolism , Cell Fusion/methods , Giant Cells/cytology , Giant Cells/metabolism , Cell Polarity
13.
Subcell Biochem ; 104: 119-137, 2024.
Article in English | MEDLINE | ID: mdl-38963486

ABSTRACT

Transporters of the monoamine transporter (MAT) family regulate the uptake of important neurotransmitters like dopamine, serotonin, and norepinephrine. The MAT family functions using the electrochemical gradient of ions across the membrane and comprises three transporters, dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). MAT transporters have been observed to exist in monomeric states to higher-order oligomeric states. Structural features, allosteric modulation, and lipid environment regulate the oligomerization of MAT transporters. NET and SERT oligomerization are regulated by levels of PIP2 present in the membrane. The kink present in TM12 in the MAT family is crucial for dimer interface formation. Allosteric modulation in the dimer interface hinders dimer formation. Oligomerization also influences the transporters' function, trafficking, and regulation. This chapter will focus on recent studies on monoamine transporters and discuss the factors affecting their oligomerization and its impact on their function.


Subject(s)
Protein Multimerization , Humans , Animals , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/genetics , Allosteric Regulation
14.
Cells ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38994949

ABSTRACT

The goal of cancer research is to identify characteristics of cancer cells that allow them to be selectively eliminated without harming the host. One such characteristic is autophagy dependence. Cancer cells survive, proliferate, and metastasize under conditions where normal cells do not. Thus, the requirement in cancer cells for more energy and macromolecular biosynthesis can evolve into a dependence on autophagy for recycling cellular components. Recent studies have revealed that autophagy, as well as different forms of cellular trafficking, is regulated by five phosphoinositides associated with eukaryotic cellular membranes and that the enzymes that synthesize them are prime targets for cancer therapy. For example, PIKFYVE inhibitors rapidly disrupt lysosome homeostasis and suppress proliferation in all cells. However, these inhibitors selectively terminate PIKFYVE-dependent cancer cells and cancer stem cells with not having adverse effect on normal cells. Here, we describe the biochemical distinctions between PIKFYVE-sensitive and -insensitive cells, categorize PIKFYVE inhibitors into four groups that differ in chemical structure, target specificity and efficacy on cancer cells and normal cells, identify the mechanisms by which they selectively terminate autophagy-dependent cancer cells, note their paradoxical effects in cancer immunotherapy, and describe their therapeutic applications against cancers.


Subject(s)
Autophagy , Neoplasms , Autophagy/drug effects , Humans , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Animals , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use
15.
Methods Mol Biol ; 2814: 133-147, 2024.
Article in English | MEDLINE | ID: mdl-38954203

ABSTRACT

Activation processes at the plasma membrane have been studied with life-cell imaging using GFP fused to a protein that binds to a component of the activation process. In this way, PIP3 formation has been monitored with CRAC-GFP, Ras-GTP with RBD-Raf-GFP, and Rap-GTP with Ral-GDS-GFP. The fluorescent sensors translocate from the cytoplasm to the plasma membrane upon activation of the process. Although this translocation assay can provide very impressive images and movies, the method is not very sensitive, and amount of GFP-sensor at the plasma membrane is not linear with the amount of activator. The fluorescence in pixels at the cell boundary is partly coming from the GFP-sensor that is bound to the activated membrane and partly from unbound GFP-sensor in the cytosolic volume of that boundary pixel. The variable and unknown amount of cytosol in boundary pixels causes the low sensitivity and nonlinearity of the GFP-translocation assay. Here we describe a method in which the GFP-sensor is co-expressed with cytosolic-RFP. For each boundary pixels, the RFP fluorescence is used to determine the amount of cytosol of that pixel and is subtracted from the GFP fluorescence of that pixel yielding the amount of GFP-sensor that is specifically associated with the plasma membrane in that pixel. This GRminusRD method using GFP-sensor/RFP is at least tenfold more sensitive, more reproducible, and linear with activator compared to GFP-sensor alone.


Subject(s)
Cell Membrane , Green Fluorescent Proteins , Cell Membrane/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Humans , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Protein Transport , Microscopy, Fluorescence/methods , Cytosol/metabolism , Animals
16.
Genes (Basel) ; 15(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39062711

ABSTRACT

Spider mite infestation has a severe impact on tea growth and quality. In this study, we conducted a deep exploration of the functions and regulations of the CsPIP5K gene family using chromosomal localization and collinearity analysis. Additionally, we carefully examined the cis elements within these genes. To fully understand the metabolic response of CsPIP5K under spider mite infection, we integrated previously published metabolomic and transcriptomic data. Our analysis revealed that multiple CsPIP5K genes are associated with phospholipid metabolism, with CsPIP5K06 showing the strongest correlation. Therefore, we employed qPCR and subcellular localization techniques to determine the expression pattern of this gene and its functional location within the cell. Overall, this study not only comprehensively elucidated the characteristics, structure, and evolution of the CsPIP5K gene family but also identified several candidate CsPIP5K genes related to phospholipid biosynthesis and associated with spider mites based on previously published data. This research makes a significant contribution to enhancing the resistance of tea to spider mite and maintaining optimal tea quality.


Subject(s)
Camellia sinensis , Multigene Family , Plant Proteins , Camellia sinensis/genetics , Camellia sinensis/parasitology , Animals , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phylogeny , Tetranychidae/genetics , Phospholipids/metabolism
17.
Plant Physiol Biochem ; 214: 108974, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068876

ABSTRACT

Excessive lead (Pb) in the soil affects crop growth and development, thus threatening human beings via food chains. Plasma membrane intrinsic proteins (PIPs) facilitate the transport of substrates across cell membranes. Herein, we characterized maize PIPs and identified eight Pb accumulation-associated PIP genes using association studies. Among these, ZmPIP1;6 was simultaneously correlated with root Pb concentrations under various Pb treatment stages. Significant correlations were observed between the ZmPIP1;6 expression abundance and Pb accumulation in maize roots. Ectopic expression in yeast showed that ZmPIP1;6 conferred Pb accumulation in the cells and affected Pb tolerance in yeast. Overexpression in maize demonstrated that ZmPIP1;6 altered the Pb concentration performance and root moisture content under Pb stress. Meanwhile, protein interaction analyses suggested that ZmPIP1; 6 and three PIP2 members formed isoforms and facilitate water uptake in maize roots. However, ZmPIP1; 6 improved Pb absorption in maize roots probably by interacting with CASP-like protein 2C3 and/or another metal transporter. Moreover, the significant variants in the ZmPIP1;6 promoter caused the variations in ZmPIP1;6 expression level and Pb accumulation among various maize germplasms. Our study will contribute to understanding of PIP family-mediated Pb accumulation in crops and bioremediation of Pb-polluted soils.


Subject(s)
Lead , Plant Proteins , Plant Roots , Water , Zea mays , Zea mays/metabolism , Zea mays/genetics , Plant Roots/metabolism , Plant Roots/genetics , Lead/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Water/metabolism , Gene Expression Regulation, Plant , Aquaporins/metabolism , Aquaporins/genetics
18.
Elife ; 122024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082940

ABSTRACT

PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gßγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH-DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH-DEP1 and PH-4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.


Subject(s)
Guanine Nucleotide Exchange Factors , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Humans , Cryoelectron Microscopy , Phosphatidylinositol Phosphates/metabolism , Protein Conformation , Protein Binding
19.
J Thorac Dis ; 16(6): 3574-3582, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983141

ABSTRACT

Background: Excess tidal volume and driving pressure were associated with increased mortality in patients with acute respiratory distress syndrome (ARDS). Still, the appropriate mechanical ventilation strategy for patients who do not have ARDS needs to be understood. This study aimed to identify risk factors for mortality in acute respiratory failure patients without ARDS. Methods: We included all mechanically ventilated patients who did not meet the criteria for ARDS and were admitted to the medical intensive care unit (ICU) from October 2017 to September 2018. Patients who had tracheostomy before admission, were intubated for more than 24 hours before transfer to ICU, or underwent extracorporeal membrane oxygenation within 24 hours of ICU admission were excluded. Clinical and physiologic data were recorded and compared between survived and non-survived patients. Results: Of 289 patients with acute respiratory failure, 134 patients without ARDS were included; 69 (51%) died within 28 days. Demographics, principal diagnosis, and lung injury score on the first day of admission were not significantly different between survived and non-survived patients. In multivariate analysis, higher peak inspiratory pressure (PIP) during the first 3 days of admission [odds ratio (OR) 1.11, 95% confidence interval (CI): 1.01-1.22, P=0.04], higher sequential organ failure assessment score (OR 1.15, 95% CI: 1.04-1.28, P=0.008) and underlying cerebrovascular diseases (OR 7.09, 95% CI: 1.78-28.28, P=0.006) were independently associated with mortality in these patients, whereas dynamic lung compliance (Cdyn) and respiratory rate were not associated with mortality in the multivariate model. Conclusions: Mortality was high in mechanically ventilated patients without ARDS. Higher PIP is a potentially modifiable risk factor for mortality in these patients, independent of the baseline Cdyn. Underlying cerebrovascular diseases and increased disease severity are also independent factors associated with 28-day mortality.

20.
J Mol Biol ; 436(16): 168695, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38969056

ABSTRACT

Proliferating cell nuclear antigen (PCNA), the homotrimeric eukaryotic sliding clamp protein, recruits and coordinates the activities of a multitude of proteins that function on DNA at the replication fork. Chromatin assembly factor 1 (CAF-1), one such protein, is a histone chaperone that deposits histone proteins onto DNA immediately following replication. The interaction between CAF-1 and PCNA is essential for proper nucleosome assembly at silenced genomic regions. Most proteins that bind PCNA contain a PCNA-interacting peptide (PIP) motif, a conserved motif containing only eight amino acids. Precisely how PCNA is able to discriminate between binding partners at the replication fork using only these small motifs remains unclear. Yeast CAF-1 contains a PIP motif on its largest subunit, Cac1. We solved the crystal structure of the PIP motif of CAF-1 bound to PCNA using a new strategy to produce stoichiometric quantities of one PIP motif bound to each monomer of PCNA. The PIP motif of CAF-1 binds to the hydrophobic pocket on the front face of PCNA in a similar manner to most known PIP-PCNA interactions. However, several amino acids immediately flanking either side of the PIP motif bind the IDCL or C-terminus of PCNA, as observed for only a couple other known PIP-PCNA interactions. Furthermore, mutational analysis suggests positively charged amino acids in these flanking regions are responsible for the low micromolar affinity of CAF-1 for PCNA, whereas the presence of a negative charge upstream of the PIP prevents a more robust interaction with PCNA. These results provide additional evidence that positive charges within PIP-flanking regions of PCNA-interacting proteins are crucial for specificity and affinity of their recruitment to PCNA at the replication fork.


Subject(s)
Chromatin Assembly Factor-1 , Models, Molecular , Proliferating Cell Nuclear Antigen , Protein Binding , Saccharomyces cerevisiae , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Chromatin Assembly Factor-1/metabolism , Chromatin Assembly Factor-1/chemistry , Chromatin Assembly Factor-1/genetics , Crystallography, X-Ray , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/genetics , Protein Conformation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL