Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 763
Filter
1.
J Fluoresc ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958905

ABSTRACT

Pedalium Murex leaf extract was used in this study to create Nickel-doped Cerium oxide (Ni-CeO2) nanoparticles at 3 mol% and 5 mol% molar concentrations. The biosynthesized process was applied for the fabrication of Ni-CeO2 NPs. The X-ray diffraction method was used to identify their crystal structure. The XRD measurements showed that the Ni-CeO2 NPs crystallized into the face-centred cubic system. Fourier transform infrared spectral study was applied to explore the molecular vibrations and chemical bonding. The surface texture and chemical ingredients of Ni-CeO2 NPs were studied using field-emission scanning electron microscopy and energy-dispersive X-ray analysis. The EDX mapping spectra illustrate the uniform dispersal of Ce, Ni, and O atoms over the sample's surface. X-ray photoelectron spectroscopy (XPS) was conducted to confirm the chemical state of the Ni-CeO2 NPs. UV-Vis spectrum study was performed to ascertain the photon absorption, bandgap, and Urbach edge of Ni-CeO2 NPs. Photoluminescence (PL) research has been used to study the light-emitting characteristic of Ni-CeO2 NPs. The emissive intensity transition corresponding to Ni-CeO2 NPs was found to increase with the dopant level. The CIE 1931 chromaticity map was plotted to find the aptness of the samples for optical uses. The antifungal ability of Ni-CeO2 NPs was evaluated against the fungi candida albicans and candida krusein with the agar well-diffusion process. The fungicidal activity of the 3 mol% Ni doped CeO2 nanoparticles has shown a maximum zone of inhibition. The experimental findings illustrate the utility of Ni-CeO2 NPs for optical and antifungal applications.

2.
BMC Public Health ; 24(1): 1738, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951834

ABSTRACT

Research indicates that COVID-19 has had adverse effects on the mental health of adolescents, exacerbating their negative psychological states. The purpose of this study is to investigate the impact of Physical Literacy (PL) on Negative Mental State caused by COVID-19 (NMSC) and identify potential factors related to NMSC and PL in Chinese adolescents. This cross-sectional study involved a total of 729 Chinese high school students with an average age of 16.2 ± 1.1 years. Participants' demographic data, PL data, and NMSC data were collected. PL and NMSC were measured using the self-reported Portuguese Physical Literacy Assessment Questionnaire (PPLA-Q), the Stress and Anxiety to Viral Epidemics-6 (SAVE-6), and the Fear of COVID-19 Scale (FCV-19). Adolescents in the current study demonstrated higher levels of NMSC and lower PL, with average scores of 3.45 and 2.26, respectively (on a scale of 5). Through multiple linear regression analysis, Motivation (MO), Confidence (CO), Emotional Regulation (ER), and Physical Regulation (PR) were identified as factors influencing NMSC in adolescents. The study findings contribute to providing guidance for actions aimed at alleviating NMSC among adolescents.


Subject(s)
COVID-19 , Resilience, Psychological , Adolescent , Female , Humans , Male , China/epidemiology , COVID-19/psychology , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , East Asian People , Health Literacy/statistics & numerical data , Mental Health , Surveys and Questionnaires
3.
Comput Biol Chem ; 112: 108132, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38959551

ABSTRACT

In the global fight against the COVID-19 pandemic caused by the highly transmissible SARS-CoV-2 virus, the search for potent medications is paramount. With a focused investigation on the SARS-CoV-2 papain-like protease (PLpro) as a promising therapeutic target due to its pivotal role in viral replication and immune modulation, the catalytic triad of PLpro comprising Cys111, His272, and Asp286, highlights Cys111 as an intriguing nucleophilic center for potential covalent bonds with ligands. The detailed analysis of the binding site unveils crucial interactions with both hydrophobic and polar residues, demonstrating the structural insights of the cavity and deepening our understanding of its molecular landscape. The sequence of PLpro among variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and the recent variant of interest, JN.1, remains conserved with no mutations at the active site. Moreover, a thorough exploration of apo, non-covalently bound, and covalently bound PLpro conformations exposes significant conformational changes in loop regions, offering invaluable insights into the intricate dynamics of ligand-protein complex formation. Employing strategic in silico medication repurposing, this study swiftly identifies potential molecules for target inhibition. Within the domain of covalent docking studies and molecular dynamics, using reported inhibitors and clinically tested molecules elucidate the formation of stable covalent bonds with the cysteine residue, laying a robust foundation for potential therapeutic applications. These details not only deepen our comprehension of PLpro inhibition but also play a pivotal role in shaping the dynamic landscape of COVID-19 treatment strategies.

4.
Pharm Stat ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39015015

ABSTRACT

In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.

5.
Article in English | MEDLINE | ID: mdl-39025679

ABSTRACT

Constructing self-assembly with definite assembly structure-property correlation is of great significance for expanding the property richness and functional diversity of metal nanoclusters (NCs). Herein, a well-designed liquid reaction strategy was developed through which a highly ordered nanofiber superstructure with enhanced green photoluminescence (PL) was obtained via self-assembly of the individual silver nanoclusters (Ag NCs). By visual monitoring of the kinetic reaction process using time-dependent and in situ spectroscopy measurements, the assembling structure growth and the structure-determined luminescence mechanisms were revealed. The as-prepared nanofibers featured a series of advantages involving a high emission efficiency, large Stokes shift, homogeneous chromophore, excellent photostability, high temperature, and pH sensibility. By virtue of these merits, they were successfully employed in various fields of luminescent inks, encryption and anticounterfeiting platforms, and optoelectronic light-emitting diode (LED) devices.

6.
Neural Netw ; 179: 106514, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39024708

ABSTRACT

Shuffling-type gradient method is a popular machine learning algorithm that solves finite-sum optimization problems by randomly shuffling samples during iterations. In this paper, we explore the convergence properties of shuffling-type gradient method under mild assumptions. Specifically, we employ the bandwidth-based step size strategy that covers both monotonic and non-monotonic step sizes, thereby providing a unified convergence guarantee in terms of step size. Additionally, we replace the lower bound assumption of the objective function with that of the loss function, thereby eliminating the restrictions on the variance and the second-order moment of stochastic gradient that are difficult to verify in practice. For non-convex objectives, we recover the last iteration convergence of shuffling-type gradient algorithm with a less cumbersome proof. Meanwhile, we also establish the convergence rate for the minimum iteration of gradient norms. Under the Polyak-Lojasiewicz (PL) condition, we prove that the function value of last iteration converges to the lower bound of the objective function. By selecting appropriate boundary functions, we further improve the previous sublinear convergence rate results. Overall, this paper contributes to the understanding of shuffling-type gradient method and its convergence properties, providing insights for optimizing finite-sum problems in machine learning. Finally, numerical experiments demonstrate the efficiency of shuffling-type gradient method with bandwidth-based step size and validate our theoretical results.

7.
Materials (Basel) ; 17(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930290

ABSTRACT

GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) technology and investigated using multiple characterization techniques of Nomarski microscopy (NM), high-resolution X-ray diffraction (HR-XRD), variable angular spectroscopic ellipsometry (VASE), Raman scattering, photoluminescence (PL), and synchrotron radiation (SR) near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NM confirmed crack-free wurtzite (w-) GaN thin films in a large range of 180-1500 nm. XRD identified the w- single crystalline structure for these GaN films with the orientation along the c-axis in the normal growth direction. An optimized 700 °C growth temperature, plus other corresponding parameters, was obtained for the PA-MBE growth of GaN on Si, exhibiting strong PL emission, narrow/strong Raman phonon modes, XRD w-GaN peaks, and high crystalline perfection. VASE studies identified this set of MBE-grown GaN/Si as having very low Urbach energy of about 18 meV. UV (325 nm)-excited Raman spectra of GaN/Si samples exhibited the GaN E2(low) and E2(high) phonon modes clearly without Raman features from the Si substrate, overcoming the difficulties from visible (532 nm) Raman measurements with strong Si Raman features overwhelming the GaN signals. The combined UV excitation Raman-PL spectra revealed multiple LO phonons spread over the GaN fundamental band edge emission PL band due to the outgoing resonance effect. Calculation of the UV Raman spectra determined the carrier concentrations with excellent values. Angular-dependent NEXAFS on Ga K-edge revealed the significant anisotropy of the conduction band of w-GaN and identified the NEXAFS resonances corresponding to different final states in the hexagonal GaN films on Si. Comparative GaN material properties are investigated in depth.

8.
Nutrients ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931275

ABSTRACT

Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus plantarum , Lactococcus lactis , Muscle Strength , Physical Endurance , Probiotics , Humans , Probiotics/administration & dosage , Double-Blind Method , Male , Physical Endurance/physiology , Female , Adult , Young Adult , Oxygen Consumption , Muscle, Skeletal/physiology , Exercise/physiology
9.
Nanotechnology ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897177

ABSTRACT

Silicon in its nanoscale range offers versatile scope in biomedical, photovoltaic and solar cell applications. Due to its compatibility in integration with complex molecules owing to changes in charge density of as-fabricated SiNSs to realize label-free and real-time detection of certain biological and chemical species with certain biomolecules, it can be exploited as an indicator for ultra-sensitive and cost-effective biosensing applications in disease diagnosis. The morphological changes of SiNSs modified receptors (PNA, DNA etc) finds huge future scope in optimized sensitivity (due to conductance variations of SiNSs) of target biomolecules in health care applications. Further, due to unique optical and electrical properties of SiNSs realized using chemical etching technique, they can be used as an indicator for photovoltaic and solar cell applications. In this review, emphasis is done on different critical parameters that control the fabrication morphologies of SiNSs using metal assisted chemical etching technique (MACE) and its corresponding fabrication mechanisms focussing on numerous applications in energy storage and health care domains. The evolution of MACE as a low cost, easy process control, reproducibility and convenient fabrication mechanism makes it a highly reliable-process friendly technique employed in photovoltaic, energy storage and biomedical fields. Analysis of the experimental fabrication to obtain high aspect ratio SiNSs was carried out using iMAGE J software for understanding the role of surface to volume ratio in effective bacterial interfacing. Also, the role of Silicon nanomaterials has been discussed as effective anti-bacterial surfaces due to the presence of Silver investigated in the post fabrication Energy Dispersive X-Ray Spectroscopy (EDS) analysis using MACE.

10.
Transl Pediatr ; 13(5): 840-846, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38840680

ABSTRACT

Background: Proboscis lateralis (PL) is a rare congenital malformation of the craniofacial structure. On the basis of 34 reported cases, Boo-Chai developed the first classification system in 1985 based on commonly associated anomalies of the eyes, palate, and lips. Sinonasal deformity is the most prevalent systemic abnormality associated with PL, accounting for 87.9%, and concomitant ocular anomalies account for 44-70%. Case Description: We report a case of PL in a 20-month-old female patient with a mass in the left medial canthal area, and ipsilateral symptomatic epiphora. The removal of the proboscis at 4 months without the reconstruction of the nasolacrimal duct resulted in secondary sequelae that lasted 16 months. A second operation by a multidisciplinary team released the pressure on the lacrimal sac and reconstructed the lacrimal system. External dacryocystorhinostomy (DCR) is performed through the original external incision aided by nasal endoscopic examination. The bony passage between the nasal cavity and the lacrimal sac was reconstructed, and nasal endoscopy revealed a wide opening in the nasal cavity of at least 6 mm. Follow ups ensured a patent nasal airway, without complications. Conclusions: It is instructive to learn from this case that treatment plans for PL should consider associated ocular anomalies and lacrimal drainage reconstruction, following a comprehensive and multidisciplinary approach.

11.
Microbiol Spectr ; 12(7): e0425923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757975

ABSTRACT

Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE: The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.


Subject(s)
BCG Vaccine , Genome, Bacterial , Mycobacterium bovis , Polymorphism, Single Nucleotide , Whole Genome Sequencing , BCG Vaccine/genetics , BCG Vaccine/immunology , Mycobacterium bovis/genetics , Mycobacterium bovis/classification , Poland , Humans , Tuberculosis/prevention & control , Tuberculosis/microbiology , INDEL Mutation , Mutation
12.
J Fluoresc ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733436

ABSTRACT

We studied steady-state and time-resolved photoluminescence of Eu doped BaAl2O4 phosphor. The undoped BaAl2O4 sample shows a dominant blue emission band at ~ 428 nm and two secondary maxima at ~ 405 and 456 nm due to F-centre and aggregate defects such as F2 -centre. The samples after doping of Eu at 1-5% show additional emission bands at ~ 485 and 518 nm due to Eu2+ centre and a red emission band at ~ 657 nm is attributed to Eu3+ centre. The sample doped with 2% of Eu shows anomalous emission having the dominant peak at ~ 494 nm. The average luminescence lifetime of the emission band at ~ 428 nm in the undoped sample was estimated to be (3.29 ± 0.91) ns. The average luminescence lifetime of this emission band after doping of Eu was found to increase by 102 orders of magnitude. The intensity of the 428 nm blue emission band was found to quench after doping of Eu beyond 3%. The concentration quenching effect was attributed to dipole-quadrupole interaction. Further, a non-radiative fluorescence energy transfer mechanism from an extrinsic Eu2+ centre to an intrinsic F-centre is proposed to describe the luminescence dynamics of the samples.

13.
Clin Rheumatol ; 43(6): 1971-1978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642252

ABSTRACT

OBJECTIVE: To evaluate whether anti-PL7 and anti-PL12 autoantibodies are associated with a greater extent of the fibrotic component of ILD in ASSD patients. METHODS: Patients with ILD-ASSD who were positive for one of the following autoantibodies: anti-Jo1, anti-PL7, anti-PL12, and anti-EJ were included. Clinical manifestations, CPK levels, pulmonary function tests, and HCRT assessments were prospectively collected according to the Goh index. The fibrotic, inflammatory, and overall extension of the Goh index and DLCO were assessed by multiple linear analyses and compared between ASSD antibody subgroups. RESULTS: Sixty-six patients were included; 17 were positive for anti-Jo1 (26%), 17 for anti-PL7 (26%), 20 for anti-PL12 (30%), and 9 (14%) for anti-EJ. Patients with anti-PL7 and anti-PL12 had a more extensive fibrotic component than anti-Jo1. Anti-PL7 patients had a 7.9% increase in the fibrotic extension (cß = 7.9; 95% CI 1.863, 13.918), and the strength of the association was not modified after controlling for sex, age, and time of disease evolution (aß = 7.9; 95% CI 0.677, 15.076) and also was associated with an increase in ILD severity after adjusting for the same variables, denoted by a lower DLCO (aß = - 4.47; 95% CI - 8.919 to - 0.015). CONCLUSIONS: Anti-PL7-positive ASSD patients had more extensive fibrosis and severe ILD than the anti-Jo1 subgroup. This information is clinically useful and has significant implications for managing these patients, suggesting the need for early consideration of concurrent immunosuppressive and antifibrotic therapy.


Subject(s)
Autoantibodies , Lung Diseases, Interstitial , Myositis , Humans , Female , Male , Middle Aged , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/complications , Cross-Sectional Studies , Myositis/immunology , Myositis/complications , Autoantibodies/blood , Autoantibodies/immunology , Adult , Aged , Respiratory Function Tests , Fibrosis , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology
14.
Oncol Rep ; 51(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38624021

ABSTRACT

It has been reported that PL2L60 proteins, a product of PIWIL2 gene which might be activated by an intragenic promoter, could mediate a common pathway specifically for tumorigenesis. In the present study, it was further identified by using western blot assay that the PL2L60 proteins could be degraded in cancer cells through a mechanism of selective autophagy in response to oxidative stress. The PL2L60 was downregulated in various types of cancer cells under the hypoxic condition independently of HIF­1α, resulting in apoptosis of cancer cells. Inhibition of autophagy by small interfering RNA targeting of either Beclin­1 (BECN1) or Atg5 resulted in restoration of PL2L60 expression in hypoxic cancer cell. The hypoxic degradation of PL2L60 was also blocked by the attenuation of the autophagosome membrane protein Atg8/microtubule­associated protein 1 light chain 3 (LC3) or autophagy cargo protein p62 expression. Surprisingly, Immunofluorescence analysis demonstrated that LC3 could be directly bound to PL2L60 and was required for the transport of PL2L60 from the nucleus to the cytoplasm for lysosomal flux under basal or activated autophagy in cancer cells. Moreover, flow cytometric analysis displayed that knocking down of PL2L60 mRNA but not PIWIL2 mRNA effectively inhibited cancer cell proliferation and promoted apoptosis of cancer cells. The similar results were obtained from in vivo tumorigenic experiment, in which PL2L60 downregulation in necroptosis areas was confirmed by immunohistochemistry. These results suggested that various cancer could be suppressed by promoting autophagy. The present study revealed a key role of autophagic degradation of PL2L60 in hypoxia­induced cancer cell death, which could be used as a novel therapeutic target of cancer.


Subject(s)
Neoplasms , Humans , RNA, Small Interfering/metabolism , Hypoxia/metabolism , Apoptosis , Autophagy , Stress, Physiological , RNA, Messenger , Argonaute Proteins/metabolism
15.
Small Methods ; : e2301662, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634221

ABSTRACT

Broadband emission in hybrid lead halide perovskites (LHPs) has gained significant attention due to its potential applications in optoelectronic devices. The origin of this broadband emission is primarily attributed to the interactions between electrons and phonons. Most investigations have focused on the impact of structural characteristics of LHPs on broadband emission, while neglecting the role of electronic mobility. In this work, the study investigates the electronic origins of broadband emission in a family of 2D LHPs. Through spectroscopic experiments and density functional theory calculations, the study unveils that the electronic states of the organic ligands with conjugate effect in LHPs can extend to the band edges. These band-edge carriers are no longer localized only within the inorganic layers, leading to electronic coupling with molecular states in the barrier and giving rise to additional interactions with phonon modes, thereby resulting in broadband emission. The high-pressure photoluminescence measurements and theoretical calculations reveal that hydrostatic pressure can induce the reconfiguration of band-edge states of charge carriers, leading to different types of band alignment and achieving macroscopic control of carrier dynamics. The findings can provide valuable guidance for targeted synthesis of LHPs with broadband emission and corresponding design of state-of-the-art optoelectronic devices.

16.
J Fluoresc ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619731

ABSTRACT

Graphene quantum dots (GQDs) are known as suitable material to be applied in different fields such as photodynamic therapy (PDT). Herein, GQDs were synthesized by the pyrolysis method and then decorated with selenium (Se). Afterward, they were combined with methylene blue (MB) to increase singlet oxygen generation as well as to apply them more effectively in the PDT method. Furthermore, GQDs were investigated by transmission electron microscope (TEM), photoluminescence spectrum (PL), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), reactive oxygen species (ROS) measurement, and cytotoxicity measurement. GQDs showed no dependence on the excitation wavelength. The result of ROS measurement proves that the combination of GQD-Se and MB increases singlet oxygen production. Moreover, afterglow measurement approved the beneficial effect of GQD-Se on even deep and near skin tumor treatment. Cytotoxicity measurements under dark conditions, cell viability, and the side effects on human cells were determined by (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay. Our findings show that under dark conditions, even high concentrations of nanoparticles have no significant effect on cell viability. These findings and the high biocompatibility of GQDs indicate the effective application of GQD-Se-MB in PDT.

17.
Int J Biol Macromol ; 266(Pt 2): 131283, 2024 May.
Article in English | MEDLINE | ID: mdl-38561119

ABSTRACT

Glycosaminoglycan (GAG) lyases are important tools for investigating the structure of GAGs and preparing low-molecular-weight GAGs. The PL35 family, a recently established polysaccharide lyase family, should be further investigated. In this study, we discovered a new GAG lyase, CHa1, which belongs to the PL35 family. When expressed heterologously in Escherichia coli (BL21), CHa1 exhibited high expression levels and solubility. The optimal activity was observed in Tris-HCl buffer (pH 7.0) or sodium phosphate buffer (pH 8.0) at 30 °C. The specific activities towards HA, CSA, CSC, CSD, CSE, and HS were 3.81, 13.03, 36.47, 18.46, 6.46, and 0.50 U/mg protein, respectively. CHa1 digests substrate chains randomly that acting as an endolytic lyase and shows a significant preference for GlcA-containing structures, prefers larger oligosaccharides (≥UDP8) and can generate a series of oligosaccharides composed mainly of the A unit when digesting CSA. These oligosaccharides include ΔC-A, ΔC-A-A, ΔC-A-A-A, ΔC-A-A-A-A, and ΔC-A-A-A-A-A. The residues Tyr257 and His421 play crucial roles in the catalytic process, and Ser211, Asn212, Asn213, Trp214, Gln216, Lys360, Arg460 and Gln462 may participate in the binding process of CHa1. This study on CHa1 contributes to our understanding of the PL35 family and provides valuable tools for investigating the structure of GAGs.


Subject(s)
Polysaccharide-Lyases , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/genetics , Substrate Specificity , Acetylgalactosamine/chemistry , Acetylgalactosamine/metabolism , Escherichia coli/genetics , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Amino Acid Sequence , Oligosaccharides/chemistry , Oligosaccharides/metabolism
18.
Arch Med Sadowej Kryminol ; 73(3): 210-233, 2024.
Article in English, Polish | MEDLINE | ID: mdl-38662464

ABSTRACT

The purpose of this paper is to formulate recommendations for the disclosure of biological traces in the laboratory and the handling of forensic evidence submitted for identification tests, recommended by the Polish Speaking Working Group of the International Society for Forensic Genetics. The paper organizes the knowledge of the most relevant stages of preliminary analysis of biological traces based on both literature sources and those resulting from years of research practice. Recommendations formulated in the course of multi-stage expert consultations contained in this study should be used in the development of laboratory procedures applied during the execution.


Subject(s)
Forensic Genetics , Humans , Poland , Forensic Genetics/standards , Forensic Genetics/methods , Forensic Genetics/legislation & jurisprudence , Societies, Scientific/standards , DNA Fingerprinting/standards , Disclosure/standards , Disclosure/legislation & jurisprudence
19.
Arch Med Sadowej Kryminol ; 73(4): 294-307, 2024.
Article in English | MEDLINE | ID: mdl-38662482

ABSTRACT

The purpose of this paper is to formulate recommendations for the disclosure of biological traces in the laboratory and the handling of forensic evidence submitted for identification tests, recommended by the Polish Speaking Working Group of the International Society for Forensic Genetics. The paper organizes the knowledge of the most relevant stages of preliminary analysis of biological traces based on both literature sources and those resulting from years of research practice. Recommendations formulated in the course of multi-stage expert consultations contained in this study should be used in the development of laboratory procedures applied during the execution. * The research is part of doctoral dissertation of Dagmara Lisman entitled "Genetic analysis of a skeleton site revealed during the works on the premises of the former German Forced Labor Camp Treblinka I."


Subject(s)
Forensic Anthropology , Humans , Poland , Forensic Anthropology/methods , Burial , Phylogeny , Forensic Genetics/methods , Body Remains
20.
Adv Mater ; 36(25): e2400919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38498901

ABSTRACT

Lead halide perovskites possess great application potential in flexible displays and wearable optoelectronics owing to their prominent optoelectronic properties. However, the intrinsic instability upon moisture, heat, and ultraviolet (UV) light irradiation hinders their development and application. In this work, an ultra-stable CsPbX3 (X = Cl, Br, I) perovskite luminescent filament (PLF) with high stretchability (≈2400%) and luminescence performance (photoluminescence quantum yield (PLQY) of 24.5%, tunable emission spectrum, and high color purity) is introduced by a facile environmental-friendly wet-spinning technology via solvent extraction. Benefiting from the in situ encapsulation of the hydrophobic thermoplastic polyurethane (TPU) and the chelation of Lewis base CO in TPU with Lewis acid Pb2+, the CsPbBr3 PLF demonstrates ultra-high photoluminescence (PL) stability when stored in ambient air and high humidity circumstance, annealed at 50 °C, and dipped in water for 30 days, illuminated under ultraviolet light for 300 min, and immersed in organic solvents and solutions with pH of 1-13 for 5 min, respectively. Impressively, it retains 80% of its initial PL after being recycled five times. Overall, the CsPbX3 PLF demonstrates promising prospects in multifunctional applications, including organic dyes and tensile strain sensing, flexible pattern displays, secondary anti-counterfeiting, and hazard warning systems.

SELECTION OF CITATIONS
SEARCH DETAIL