Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063057

ABSTRACT

Plasmodium, a digenetic parasite, requires a host and a vector for its life cycle completion. Most Plasmodium species display circadian rhythmicity during their intraerythrocytic cycle within the host, aiding in immune evasion. This rhythmicity, however, diminishes in in vitro cultures, highlighting the importance of host-derived signals for synchronizing the parasite's asexual cycle. Studies indicate a species-specific internal clock in Plasmodium, dependent on these host signals. Melatonin, a hormone the pineal gland produces under circadian regulation, impacts various physiological functions and is extensively reviewed as the primary circadian marker affecting parasite rhythms. Research suggests that melatonin facilitates synchronization through the PLC-IP3 signaling pathway, activating phospholipase C, which triggers intracellular calcium release and gene expression modulation. This evidence strongly supports the role of melatonin as a key circadian marker for parasite synchronization, presenting new possibilities for targeting the melatonin pathway when developing novel therapeutic approaches.


Subject(s)
Circadian Rhythm , Melatonin , Plasmodium , Melatonin/metabolism , Circadian Rhythm/physiology , Animals , Humans , Plasmodium/metabolism , Plasmodium/physiology , Malaria/parasitology , Malaria/metabolism , Biomarkers , Signal Transduction , Host-Parasite Interactions
2.
Environ Toxicol ; 39(1): 172-183, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37676969

ABSTRACT

Excess molybdenum (Mo) is harmful to animals, but its nephrotoxicity has not been comprehensively explained. To appraise the influences of excess Mo on Ca homeostasis and apoptosis via PLC/IP3 /IP3 R axis, primary duck renal tubular epithelial cells were exposed to 480 µM and 960 µM Mo, and joint of 960 µM Mo and 10 µM 2-APB or 0.125 µM U-73122 for 12 h (U-73122 pretreated for 1 h), respectively. The data revealed that the increment of [Ca2+ ]c induced by Mo mainly originated from intracellular Ca storage. Mo exposure reduced [Ca2+ ]ER , elevated [Ca2+ ]mit , [Ca2+ ]c , and the expression of Ca homeostasis-related factors (Calpain, CaN, CRT, GRP94, GRP78 and CaMKII). 2-APB could effectively reverse subcellular Ca2+ redistribution by inhibiting IP3 R, which confirmed that [Ca2+ ]c overload induced by Mo originated from ER. Additionally, PLC inhibitor U-73122 remarkably mitigated the change, and dramatically reduced the number of apoptotic cells, the expression of Bak-1, Bax, cleaved-Caspase-3/Caspase-3, and notably increased the expression of Bcl-xL, Bcl-2, and Bcl-2/Bax ratio. Overall, the results confirmed that the Ca2+ liberation of ER via PLC/IP3 /IP3 R axis was the main cause of [Ca2+ ]c overload, and then stimulated apoptosis in duck renal tubular epithelial cells.


Subject(s)
Ducks , Molybdenum , Animals , Ducks/metabolism , Molybdenum/toxicity , Molybdenum/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Epithelial Cells , Apoptosis , Calcium/metabolism
3.
Int J Nanomedicine ; 18: 7483-7503, 2023.
Article in English | MEDLINE | ID: mdl-38090366

ABSTRACT

Purpose: Fatty oil of Descurainia Sophia (OIL) has poor stability and low solubility, which limits its pharmacological effects. We hypothesized that fatty oil nanoparticles (OIL-NPs) could overcome this limitation. The protective effect of OIL-NPs against monocrotaline-induced lung injury in rats was studied. Methods: We prepared OIL-NPs by wrapping fatty oil with polylactic-polyglycolide nanoparticles (PLGA-NPs) and conducted in vivo and in vitro experiments to explore its anti-pulmonary hypertension (PH) effect. In vitro, we induced malignant proliferation of pulmonary artery smooth muscle cells (RPASMC) using anoxic chambers, and studied the effects of OIL-NPs on the malignant proliferation of RPASMC cells and phospholipase C (PLC)/inositol triphosphate receptor (IP3R)/Ca2+ signal pathways. In vivo, we used small animal echocardiography, flow cytometry, immunohistochemistry, western blotting (WB), polymerase chain reaction (PCR) and metabolomics to explore the effects of OIL-NPs on the heart and lung pathological damage and PLC/IP3R/Ca2+ signal pathway of pulmonary hypertension rats. Results: We prepared fatty into OIL-NPs. In vitro, OIL-NPs could improve the mitochondrial function and inhibit the malignant proliferation of RPASMC cells by inhibiting the PLC/IP3R/Ca2+signal pathway. In vivo, OIL-NPs could reduce the pulmonary artery pressure of rats and alleviate the pathological injury and inflammatory reaction of heart and lung by inhibiting the PLC/IP3R/Ca2+ signal pathway. Conclusion: OIL-NPs have anti-pulmonary hypertension effect, and the mechanism may be related to the inhibition of PLC/IP3R/Ca2+signal pathway.


Subject(s)
Hypertension, Pulmonary , Nanoparticles , Rats , Animals , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Rats, Sprague-Dawley , Monocrotaline/adverse effects , Type C Phospholipases/adverse effects , Type C Phospholipases/metabolism , Pulmonary Artery , Signal Transduction
4.
Int Immunopharmacol ; 124(Pt A): 110874, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690236

ABSTRACT

Pseudo-allergic reaction is an allergic reaction mediated by nonimmunoglobulin E (IgE), which does not require prior contact with antigen sensitization and directly leads to mast cell degranulation. Daphnetin (DAP) is known for its anti-inflammatory effects, but there are few studies on the effect of DAP on pseudo-allergy and its mechanism. To investigate the effect of DAP on pseudo-allergy and its mechanism, we inflicted pseudo-allergy on RBL-2H3 cells using C48/80 in vitro. Moreover, to assess the antipseudo-allergy effect of C48/80 in vivo, mouse models of local anaphylaxis, systemic anaphylaxis, and itch were used. The in vitro results show that DAP inhibits degranulation and chemokine release; furthermore, DAP reduced the activation of the PLC-IP3R and MAPK signaling pathways induced by C48/80. Additionally, our in vivo results showed that DAP inhibited C48/80-induced local anaphylaxis and inhibited eosinophil aggregation, vasodilation and mast cell degranulation. In systemic anaphylaxis, DAP inhibits the decrease in body temperature and reduces the release of His, TNF-a and IL-8. In C48/80-induced itch, the number of scratches in mice was reduced. Our results demonstrate that DAP can play a suppressive role in the pseudo-allergy induced by C48/80, providing information for the cure of disorders linked to pseudo-allergic reactions.

5.
Cell Biol Int ; 47(12): 1964-1975, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37650361

ABSTRACT

Platelet-derived microvesicles (PMVs) represent a significant proportion of microvesicles in circulation and have been linked to various pathophysiological complications. Recent research suggests that PMVs carry significant amounts of cargo that can affect cellular functions by influencing calcium oscillations in target cells. As calcium is involved in multiple cellular processes, including hemostasis and thrombosis, this study aimed to investigate the impact of PMVs on platelet calcium mobilization. The study found that PMVs increase platelet intracellular calcium levels via both intracellular storage and extracellular space in a dose-dependent manner. The study highlighted the critical role of the dense tubular system, acidic vacuoles, mitochondrial stores, and store-operated calcium entry (SOCE) in PMV-mediated calcium release in human platelets. Moreover, the study revealed that PMV-induced calcium rise in platelets does not occur via sarcoendoplasmic reticulum calcium ATPase, and extracellular calcium addition further increases the calcium level in platelets, demonstrating the involvement of SOCE. These findings provide insights into the platelet stimulation signaling mechanisms and contributes to our understanding of platelet and cell behavior when exposed to PMV-rich environments.


Subject(s)
Blood Platelets , Calcium , Humans , Calcium/metabolism , Blood Platelets/metabolism , Calcium Signaling
6.
Biomed Pharmacother ; 162: 114677, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37044024

ABSTRACT

Cyanidin is the most abundant anthocyanin found in red-purple plants and possesses anti-obesity properties. However, its mechanism of action in adipocytes remains unknown. The objective of this study was to elucidate how cyanidin inhibits adipocyte formation in 3T3-L1 preadipocytes. Cells were cultured in adipogenic differentiation medium supplemented with cyanidin and examined for adipogenesis, cell viability, and adipocyte gene expression using Oil Red O staining, MTT assay, and RT-qPCR. Real-time Ca2+ imaging analysis was performed in living cells to elucidate cyanidin's mechanism of action. The results demonstrated that cyanidin (1-50 µM) supplementation to the adipogenic medium inhibited adipogenesis by downregulating adipogenic marker gene expression (PPARγ, C/EBPα, adiponectin, and aP2) without affecting cell viability after 4 days of treatment. Stimulation of cells with cyanidin (30-100 µM) increased intracellular Ca2+ in a concentration dependent manner with peak calcium increases at 50 µM. Pretreatment of cells with the phospholipase C (PLC) inhibitor U73122, inositol triphosphate (IP3) receptor blocker 2-APB, and depletion of endoplasmic reticulum Ca2+ stores by thapsigargin abolished the Ca2+ increases by cyanidin. These findings suggested that cyanidin inhibits adipocyte formation by activating the PLC-IP3 pathway and intracellular Ca2+ signaling. Our study is the first report describing the mechanism underlying the anti-obesity effect of cyanidin.


Subject(s)
Adipogenesis , Anthocyanins , Mice , Animals , Anthocyanins/pharmacology , 3T3-L1 Cells , Type C Phospholipases/metabolism , Down-Regulation , Cell Differentiation , Obesity/metabolism , PPAR gamma/metabolism
7.
Biomaterials ; 290: 121823, 2022 11.
Article in English | MEDLINE | ID: mdl-36209577

ABSTRACT

Electrically excitable cells such as neurons transmit long-distance calcium or electrical signals to regulate their physiological functions. While the molecular underpinnings and down-stream effects of these intercellular communications in excitable cells have been well appreciated, little is known about whether and how non-excitable cancer cells spontaneously initiate and transmit long-distance intercellular signals. Here we report that non-excitable human colon and prostate cancer cells spontaneously initiate and spread intercellular calcium waves, in vitro and ex vivo. Xenograft model studies suggest that these calcium signals promote the growth rate of tumors in mice. Pharmacological studies elucidated that the inositol-trisphosphate-receptor (IP3R)-regulated calcium release from endoplasmic reticulum (ER), which is activated by the Gq-PLC-IP3R pathway, is a major cause for the initiation of spontaneous calcium transients. Further, the spatial-temporal characteristics of calcium dynamics can be tuned by the culture substrates of different mechanical stiffnesses. Our results provide evidence that calcium dynamics enables long-distance functional communication in non-excitable cancer cells and offer the potential to modulate calcium signaling for new cancer therapies.


Subject(s)
Calcium , Neoplasms , Male , Humans , Mice , Animals , Calcium/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/pharmacology , Calcium Signaling , Endoplasmic Reticulum/metabolism , Neoplasms/metabolism
8.
Environ Toxicol ; 37(11): 2660-2672, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35926093

ABSTRACT

Cadmium (Cd) is detrimental to animals, but nephrotoxic effects of Cd on duck have not been fully elucidated. To evaluate the impacts of Cd on Ca homeostasis and autophagy via PLC-IP3 -IP3 R pathway, primary duck renal tubular epithelial cells were exposed to 2.5 µM and 5.0 µM Cd, and combination of 5.0 µM Cd and 10.0 µM 2-APB or 0.125 µM U-73122 for 12 h (U-73122 pretreated for 1 h). These results evidenced that Cd induced [Ca2+ ]c overload mainly came from intracellular Ca store. Cd caused [Ca2+ ]mit and [Ca2+ ]c overload with [Ca2+ ]ER decrease, elevated Ca homeostasis related factors (GRP78, GRP94, CRT, CaN, CaMKII, and CaMKKß) expression, PLC and IP3 activities and IP3 R expression, but subcellular Ca2+ redistribution was reversed by 2-APB. PLC inhibitor U-73122 dramatically relieved the changes of the above indicators induced by Cd. Additionally, U-73122 obviously reduced the number of autophagosomes and LC3 accumulation spots, Atg5, LC3A, LC3B mRNA levels and LC3II/LC3I, Beclin-1 protein levels induced by Cd, and markedly elevated p62 mRNA and protein levels. Overall, the results verified that Cd induced [Ca2+ ]c overload mainly originated from ER Ca2+ release mediated by PLC-IP3 -IP3 R pathway, then triggered autophagy in duck renal tubular epithelial cells.


Subject(s)
Cadmium , Ducks , Animals , Autophagy , Beclin-1/metabolism , Cadmium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Ducks/metabolism , Epithelial Cells , RNA, Messenger/metabolism , Signal Transduction
9.
Front Pharmacol ; 13: 922885, 2022.
Article in English | MEDLINE | ID: mdl-35784730

ABSTRACT

Alcohol-related liver fibrosis (ALF) is a form of alcohol-related liver disease (ALD) that generally occurs in response to heavy long-term drinking. Ecto-5'-nucleotidase (NT5E), also known as CD73, is a cytomembrane protein linked to the cell membrane via a GPI anchor that regulates the conversion of extracellular ATP to adenosine. Adenosine and its receptors are important regulators of the cellular response. Previous studies showed that CD73 and adenosine A1 receptor (A1R) were important in alcohol-related liver disease, however the exact mechanism is unclear. The aim of this study was to elucidate the role and mechanism of the CD73-A1R axis in both a murine model of alcohol and carbon tetrachloride (CCl4) induced ALF and in an in vitro model of fibrosis induced by acetaldehyde. The degree of liver injury was determined by measuring serum AST and ALT levels, H & E staining, and Masson's trichrome staining. The expression levels of fibrosis indicators and PLC-IP3-Ca2+/DAG-PKC signaling pathway were detected by quantitative real-time PCR, western blotting, ELISA, and calcium assay. Hepatic stellate cell (HSC) apoptosis was detected using the Annexin V-FITC/PI cell apoptosis detection kit. Knockdown of CD73 significantly attenuated the accumulation of α-SMA and COL1a1 damaged the histological architecture of the mouse liver induced by alcohol and CCl4. In vitro, CD73 inhibition attenuated acetaldehyde-induced fibrosis and downregulated A1R expression in HSC-T6 cells. Inhibition of CD73/A1R downregulated the expression of the PLC-IP3-Ca2+/DAG-PKC signaling pathway. In addition, silencing of CD73/A1R promoted apoptosis in HSC-T6 cells. In conclusion, the CD73-A1R axis can regulate the activation and apoptosis of HSCs through the PLC-IP3-Ca2+/DAG-PKC signaling pathway.

10.
Biomed Pharmacother ; 146: 112494, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891116

ABSTRACT

Cyanidin-3-rutinoside (C3R) is an anthocyanin with anti-diabetic properties found in red-purple fruits. However, the molecular mechanisms of C3R on Ca2+-dependent insulin secretion remains unknown. This study aimed to identify C3R's mechanisms of action in pancreatic ß-cells. Rat INS-1 cells were used to elucidate the effects of C3R on insulin secretion, intracellular Ca2+ signaling, and gene expression. The results showed that C3R at 60, 100, and 300 µM concentrations significantly increased insulin secretion via intracellular Ca2+ signaling. The exposure of cells with C3R concentrations up to 100 µM did not affect cell viability. Pretreatment of cells with nimodipine (voltage-dependent Ca2+ channel (VDCC) blocker), U73122 (PLC inhibitor), and 2-APB (IP3 receptor blocker) inhibited the intracellular Ca2+ signals by C3R. Interestingly, C3R increased intracellular Ca2+ signals and insulin secretion after depletion of endoplasmic reticulum Ca2+ stores by thapsigargin. However, insulin secretion was abolished under extracellular Ca2+-free conditions. Moreover, C3R upregulated mRNA expression for Glut2 and Kir6.2 genes. These findings indicate that C3R stimulated insulin secretion by promoting Ca2+ influx via VDCCs and activating the PLC-IP3 pathway. C3R also upregulates the expression of genes necessary for glucose-induced insulin secretion. This is the first study describing the molecular mechanisms by which C3R stimulates Ca2+-dependent insulin secretion from pancreatic ß-cells. These findings contribute to our understanding on how anthocyanins improve hyperglycemia in diabetic patients.


Subject(s)
Anthocyanins/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Animals , Calcium/metabolism , Calcium Channels, L-Type/genetics , Cell Line , Cell Survival/drug effects , Glucose Transporter Type 2/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Insulin-Secreting Cells/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Rats , Type C Phospholipases/metabolism
11.
mBio ; 12(3): e0134721, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34154396

ABSTRACT

Little is known about how eukaryotic cells can sense their number or spatial density and stop proliferating when the local density reaches a set value. We previously found that Dictyostelium discoideum accumulates extracellular polyphosphate to inhibit its proliferation, and this requires the G protein-coupled receptor GrlD and the small GTPase RasC. Here, we show that cells lacking the G protein component Gß, the Ras guanine nucleotide exchange factor GefA, phosphatase and tensin homolog (PTEN), phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor-like protein A (IplA), polyphosphate kinase 1 (Ppk1), or the TOR complex 2 component PiaA have significantly reduced sensitivity to polyphosphate-induced proliferation inhibition. Polyphosphate upregulates IP3, and this requires GrlD, GefA, PTEN, PLC, and PiaA. Polyphosphate also upregulates cytosolic Ca2+, and this requires GrlD, Gß, GefA, RasC, PLC, IplA, Ppk1, and PiaA. Together, these data suggest that polyphosphate uses signal transduction pathways including IP3/Ca2+ to inhibit the proliferation of D. discoideum. IMPORTANCE Many mammalian tissues such as the liver have the remarkable ability to regulate their size and have their cells stop proliferating when the tissue reaches the correct size. One possible mechanism involves the cells secreting a signal that they all sense, and a high level of the signal tells the cells that there are enough of them and to stop proliferating. Although regulating such mechanisms could be useful to regulate tissue size to control cancer or birth defects, little is known about such systems. Here, we use a microbial system to study such a mechanism, and we find that key elements of the mechanism have similarities to human proteins. This then suggests the possibility that we may eventually be able to regulate the proliferation of selected cell types in humans and animals.


Subject(s)
Calcium/metabolism , Cell Proliferation , Dictyostelium/genetics , Dictyostelium/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Signal Transduction , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Polyphosphates/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
12.
Acta Biochim Biophys Sin (Shanghai) ; 52(6): 675-682, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32445466

ABSTRACT

In this study, we aimed to explore the effect of TrkB-PLC/IP3 pathway on intestinal inflammatory factors and enterocyte apoptosis in mice with colitis. The mouse model of ulcerative colitis was established by medication, and 40 SPF C57BL/6J mice (8 weeks old) were randomly divided into normal group (healthy mice, n = 10), control group (sham-operated mice, n = 10), model group (model mice without any treatment, n = 10), and K252a group (model mice treated with 100 µmol/kg TrkB-PLC/IP3 pathway inhibitor for 5 days before clysis, n = 10). The results showed that mice in the model and K252a groups, as compared with normal and control groups, had no significant changes in the levels and protein expressions of serum tumor necrosis factor-α (TNF-α) and TNF-γ in the colon tissues (P>0.05), and had a significant increase in disease activity index, colon mucosa damage index, tissue damage index scores, and levels and protein expressions of serum interleukin-4 (IL-4) and IL-8, but had a significant decrease in the level and protein expression of serum IL-10 (P<0.05). Mice in the model and K252a groups showed blocked enterocyte cycle progression, elevated apoptosis ratio, and significantly increased mRNA and protein expressions of Caspase3, Bax, FasL, and Fas, but significantly reduced mRNA and protein expressions of p-TrkB, PLC-γ1, IP3, and Bcl-2 (P<0.05). Moreover, intestinal inflammation and apoptosis induced by colitis in the K252a group became more aggravated by inhibiting the activity of TrkB-PLC/IP3 pathway. In conclusion, inhibition of TrkB-PLC/IP3 pathway can increase the expression of intestinal inflammatory factors and promote enterocyte apoptosis in mice with colitis.


Subject(s)
Apoptosis , Colitis, Ulcerative/metabolism , Enterocytes/metabolism , Inflammation Mediators/metabolism , Inositol Phosphates/metabolism , Membrane Glycoproteins/metabolism , Phosphoinositide Phospholipase C/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Animals , Colitis, Ulcerative/pathology , Disease Models, Animal , Enterocytes/pathology , Mice
13.
Cell Calcium ; 76: 62-71, 2018 12.
Article in English | MEDLINE | ID: mdl-30273839

ABSTRACT

Adenosine triphosphate (ATP) is stored as lysosomal vesicles in marginal cells of the stria vascular in neonatal rats, but the mechanisms of ATP release are unclear. Primary cultures of marginal cells from 1-day-old Sprague-Dawley rats were established. P2Y2 receptor and inositol 1,4,5-trisphosphate (IP3) receptor were immunolabelled in marginal cells of the stria vascular. We found that 30 µM ATP and 30 µM uridine triphosphate (UTP) evoked comparable significant increases in the intracellular Ca2+ concentration ([Ca2+]i) in the absence of extracellular Ca2+, whereas the response was suppressed by 100 µM suramin, 10 µM 1-(6-(17ß-3-methoxyester-1,3,5(10)-trien-17-yl)amino)-hexyl)-1H-pyrrole-2,5-dione(U-73122), 100 µM 2-aminoethoxydiphenyl borate (2-APB) and 5 µM thapsigargin (TG), thus indicating that ATP coupled with the P2Y2R-PLC-IP3 pathway to evoke Ca2+ release from the endoplasmic reticulum (ER). Incubation with 200 µM Gly-Phe-ß-naphthylamide (GPN) selectively disrupted lysosomes and caused significant increases in [Ca2+]I; this effect was partly inhibited by P2Y2R-PLC-IP3 pathway antagonists. After pre-treatment with 5 µM TG, [Ca2+]i was significantly lower than that after treatment with P2Y2R-PLC-IP3 pathway antagonists under the same conditions, thus indicating that lysosomal Ca2+ triggers Ca2+ release from ER Ca2+ stores. Baseline [Ca2+]i declined after treatment with the Ca2+ chelator 50 µM bis-(aminophenolxy) ethane-N,N,N',N'-tetra-acetic acid acetoxyme-thyl ester (BAPTA-AM) and 4 IU/ml apyrase. 30 µM ATP decrease of the number of quinacrine-positive vesicles via lysosome exocytosis, whereas the number of lysosomes did not change. However, lysosome exocytosis was significantly suppressed by pre-treatment with 5 µM vacuolin-1. Release of ATP and ß-hexosaminidase both increased after treatment with 200 µM GPN and 5 µM TG, but decreased after incubation with 50 µM BAPTA-AM, 4 IU/ml apyrase and 5 µM vacuolin-1. We suggest that ATP triggers Ca2+ release from the ER, thereby contributing to secretion of lysosomal ATP via lysosomal exocytosis. Lysosomal stored Ca2+ triggers Ca2+ release from the ER directly though the IP3 receptors, and lysosomal ATP evokes Ca2+ signals indirectly via the P2Y2R-PLC-IP3 pathway.


Subject(s)
Adenosine Triphosphate/metabolism , Exocytosis , Lysosomes/metabolism , Receptors, Purinergic P2Y2/metabolism , Adenosine Triphosphate/antagonists & inhibitors , Animals , Animals, Newborn , Calcium/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Exocytosis/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Lysosomes/drug effects , Rats , Rats, Sprague-Dawley
14.
Front Pharmacol ; 9: 223, 2018.
Article in English | MEDLINE | ID: mdl-29636681

ABSTRACT

Aim: Docosahexaenoic acid (DHA) is known to activate the vascular large-conductance calcium-activated potassium (BK) channels and has protective effects on the cardiovascular system. However, the underlying mechanisms through which DHA activates BK channels remain unclear. In this study, we determined such mechanisms by examining the effects of different concentrations of DHA on BK channels in freshly isolated rat coronary arterial smooth muscle cells (CASMCs) using patch clamp techniques. Methods and Results: We found that BK channels are the major potassium currents activated by DHA in rat CASMCs and the effects of DHA on BK channels are concentration dependent with a bimodal distribution. At concentrations of <1 µM, DHA activated whole-cell BK currents with an EC50 of 0.24 ± 0.05 µM and the activation effects were abolished by pre-incubation with SKF525A (10 µM), a cytochrome P450 (CYP) epoxygenase inhibitor, suggesting the role of DHA-epoxide. High concentrations of DHA (1-10 µM) activated whole-cell BK currents with an EC50 of 2.38 ± 0.22 µM and the activation effects were unaltered by pre-incubation with SKF525A. Single channel studies showed that the open probabilities of BK channels were unchanged in the presence of low concentrations of DHA, while significantly increased with high concentrations of DHA. In addition, DHA induced a dose-dependent increase in cytosolic calcium concentrations with an EC50 of 0.037 ± 0.01 µM via phospholipase C (PLC)-inositol triphosphate (IP3)-Ca2+ signal pathway, and inhibition of this pathway reduced DHA-induced BK activation. Conclusion: These results suggest that DHA can activate BK channels by multiple mechanisms. Low concentration DHA-induced BK channel activation is mediated through CYP epoxygenase metabolites, while high concentration DHA can directly activate BK channels. In addition, DHA at low and high concentrations can both activate BK channels by elevated cytosolic calcium through the PLC-IP3-Ca2+ signal pathway.

15.
Sleep Breath ; 21(3): 679-689, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28190165

ABSTRACT

PURPOSE: Endoplasmic reticulum (ER) stress is known to play key roles in the development of endothelial cell apoptosis induced by chronic intermittent hypoxia (CIH), and the angiotensin II-phospholipase C-inositol-1,4,5-triphosphate (AngII-PLC-IP3) pathway has been demonstrated to induce ER stress. To explore whether the AngII-PLC-IP3 pathway is involved in the vascular damage induced by CIH, we examined whether the AngII-PLC-IP3 pathway is involved in ER stress induced by CIH and whether losartan, a selective angiotensin II type 1 receptor (AT1R) blocker, could suppress endothelial cell apoptosis induced by CIH. METHODS: Adult male Sprague Dawley rats were subjected to 8 h/day of intermittent hypoxia/normoxia, with or without losartan, a selective AT1R blocker, and/or U73122, a selective PLC inhibitor, for 8 weeks. Endothelial cell apoptosis, ER stress markers, and levels of PLC-γ1 and IP3R expression were determined. RESULTS: Losartan prevented increases in PLC-γ1 and IP3R protein levels and inhibited ER stress markers induced by CIH. Addition of U73122 reproduced all the protective effects of losartan. Losartan administration before CIH significantly ameliorated CIH-induced endothelial cell apoptosis. CONCLUSIONS: This study showed that the AngII-PLC-IP3 pathway is involved in ER stress induced by CIH and that pre-losartan administration ameliorates endothelial cell apoptosis following CIH partly via inhibition of the AngII-PLC-IP3 pathway and ER stress.


Subject(s)
Aorta/cytology , Apoptosis/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Hypoxia/complications , Losartan/pharmacology , Type C Phospholipases/metabolism , Animals , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Male , Rats , Rats, Sprague-Dawley
16.
Cancer Lett ; 380(1): 174-83, 2016 09 28.
Article in English | MEDLINE | ID: mdl-27390016

ABSTRACT

Secretion of 12(S)-HETE by breast cancer emboli provokes "circular chemorepellent induced defects" (CCIDs) in the adjacent lymphatic vasculature facilitating their intravasation and lymph node metastasis which determines prognosis. Therefore, elucidating the mechanism of lymph endothelial cell (LEC) wall disintegration may provide cues for anti-metastatic intervention. The role of intracellular free Ca(2+) for CCID formation was investigated in LECs using MCF-7 or MDA-MB231 breast cancer cell spheroids in a three-dimensional cell co-culture model. 12(S)-HETE elevated the Ca(2+) level in LEC by activating PLC/IP3. Downstream, the Ca(2+)-calmodulin kinase MYLK contributed to the phosphorylation of Ser19-MLC2, LEC contraction and CCID formation. Approved clinical drugs, lidoflazine, ketotifen, epiandrosterone and cyclosporine, which reportedly disturb cellular calcium supply, inhibited 12(S)-HETE-induced Ca(2+) increase, Ser19-MLC2 phosphorylation and CCID formation. This treatment strategy may reduce spreading of breast cancer through lymphatics.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , Breast Neoplasms/pathology , Calcium Signaling/drug effects , Calcium/metabolism , Cell Movement , Endothelial Cells/drug effects , Lymphatic Vessels/drug effects , Breast Neoplasms/metabolism , Calcium Channel Blockers/pharmacology , Calcium Chelating Agents/pharmacology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cardiac Myosins/metabolism , Coculture Techniques , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Female , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Lymphatic Metastasis , Lymphatic Vessels/metabolism , MCF-7 Cells , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism , Permeability , Phosphorylation , RNA Interference , Serine , Spheroids, Cellular , Time Factors , Transfection , Type C Phospholipases/metabolism
17.
Gen Comp Endocrinol ; 213: 24-31, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25562629

ABSTRACT

Water ingestion by drinking is fundamental for ion homeostasis in marine fish. However, the fluid ingested requires processing to allow net water absorption in the intestine. The formation of luminal carbonate aggregates impacts on calcium homeostasis and requires epithelial HCO3(-) secretion to enable water absorption. In light of its endocrine importance in calcium handling and the indication of involvement in HCO3(-) secretion the present study was designed to expose the role of the parathyroid hormone-related protein (PTHrP) in HCO3(-) secretion, water absorption and the regulation of aqp1 gene expression in the anterior intestine of the sea bream. HCO3(-) secretion rapidly decreased when PTHrP(1-34) was added to anterior intestine of the sea bream mounted in Ussing chambers. The effect achieved a maximum inhibition of 60% of basal secretion rates, showing a threshold effective dose of 0.1 ng ml(-1) compatible with reported plasma values of PTHrP. When applied in combination with the adenylate cyclase inhibitor (SQ 22.536, 100 µmol l(-1)) or the phospholipase C inhibitor (U73122, 10 µmol l(-1)) the effect of PTHrP(1-34) on HCO3(-) secretion was reduced by about 50% in both cases. In parallel, bulk water absorption measured in intestinal sacs was sensitive to inhibition by PTHrP. The inhibitory action conforms to a typical dose-response curve in the range of 0.1-1000 ng ml(-1), achieves a maximal effect of 60-65% inhibition from basal rates and shows threshold significant effects at hormone levels of 0.1 ng ml(-1). The action of PTHrP in water absorption was completely abolished in the presence of the adenylate cyclase inhibitor (SQ 22.536, 100 µmol l(-1)) and was insensitive to the phospholipase C inhibitor (U73122, 10 µmol l(-1)). In vivo injections of PTHrP(1-34) or the PTH/PTHrP receptor antagonist PTHrP(7-34) evoked respectively, a significant decrease or increase of aqp1ab, but not aqp1a. Overall the present results suggest that PTHrP acts as a key regulator of carbonate aggregate formation in the intestine of marine fish via its actions on water absorption, calcium regulation and HCO3(-) secretion.


Subject(s)
Antihypertensive Agents/administration & dosage , Aquaporin 1/metabolism , Intestinal Mucosa/metabolism , Parathyroid Hormone-Related Protein/administration & dosage , Peptide Fragments/administration & dosage , Sea Bream/metabolism , Water/metabolism , Animals , Carbonates/metabolism , Intestines/drug effects , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptor, Parathyroid Hormone, Type 1/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction
18.
Acta Physiol (Oxf) ; 212(3): 226-38, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25164090

ABSTRACT

BACKGROUND & AIMS: Brain-derived neurotrophic factor (BDNF) may play a critical role in gut motility. We aimed to investigate BDNF's physiologic effects on gut motility in slow-transit constipation (STC) and to explore the underlying molecular mechanisms. METHODS: BDNF expression and alterations of colonic nerve fibre density in STC patients were first investigated. BDNF's effects on gastrointestinal motility of both BDNF(+/-) mice and loperamide-induced constipation mice were then examined in vivo and in vitro. Smooth muscle α-actin (α-SMA) expression, and nerve fibre, neuromuscular junction (NMJ) and smooth muscle cell (SMC) alterations were investigated. Finally, the effects of BDNF-induced TrkB-phospholipase C/inositol trisphosphate (TrkB-PLC/IP3) pathway activation on gut motility were investigated. RESULTS: In STC patients, BDNF expression and nerve fibre density were decreased, and mucosal nerve fibre ultrastructural degenerations were demonstrated. Gut motility was decreased in vivo and in vitro in BDNF(+/-) and constipation mice, with BDNF dose-dependently increasing gut motility. In BDNF(+/-) mice, α-SMA expression and nerve fibre density were decreased, and nerve fibre, NMJ and SMC ultrastructural degenerations were observed. Finally, TrkB-PLC/IP3 pathway antagonists dramatically attenuated BDNF's excitatory effect on gut motility, and exogenous BDNF induced an obvious increase in IP3 expression. CONCLUSIONS: BDNF plays an important regulatory role in gut motility in STC. It was mediated by altering the intestinal innervation structure, as well as smooth muscle secondary degeneration through a mechanism involving TrkB-PLC/IP3 pathway activation.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Constipation/metabolism , Gastrointestinal Motility/physiology , Receptor, trkB/metabolism , Adult , Aged , Aged, 80 and over , Animals , Brain-Derived Neurotrophic Factor/deficiency , Brain-Derived Neurotrophic Factor/genetics , Colon/metabolism , Female , Gastrointestinal Motility/genetics , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neurons/metabolism , Signal Transduction/physiology , Type C Phospholipases/metabolism
19.
FASEB J ; 27(12): 5122-30, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24008754

ABSTRACT

As shown in a large clinical prospective trial, inhibition of the renin-angiotensin system (RAS) can delay the onset of type 2 diabetes in high-risk individuals. We evaluated the beneficial effects of RAS inhibition on ß-cell function under glucotoxic conditions. Human islets from 13 donors were cultured in 5.5 mM (controls) or 16.7 mM glucose [high glucose (HG)] for 4 d with or without losartan (5 µM), a selective AT1R blocker, and/or U73122 (2 µM), a selective PLC inhibitor, during the last 2 d. HG induced RAS activation with overexpression of AT1R (P<0.05) and angiotensinogen (P<0.001) mRNAs. HG increased endoplasmic reticulum (ER) stress markers (P<0.001) such as GRP78, sXBP1, and ATF4 mRNAs and Grp78 protein levels (P<0.01). HG also decreased reticular calcium concentration (P<0.0001) and modified protein expressions of ER calcium pumps with reduction of SERCA2b (P<0.01) and increase of IP3R2 (P<0.05). Losartan prevented these deleterious effects and was associated with improved insulin secretion despite HG exposure. AT1R activation triggers the PLC-IP3-calcium pathway. Losartan prevented the increase of PLC ß1 and γ1 protein levels induced by HG (P<0.05). U73122 reproduced all the protective effects of losartan. AT1R blockade protects human islets from the deleterious effects of glucose through inhibition of the PLC-IP3-calcium pathway.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Glucose/toxicity , Insulin-Secreting Cells/drug effects , Losartan/pharmacology , Phospholipase C beta/metabolism , Phospholipase C gamma/metabolism , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Estrenes/pharmacology , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Insulin/genetics , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Phospholipase C beta/antagonists & inhibitors , Phospholipase C gamma/antagonists & inhibitors , Pyrrolidinones/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL