Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Hematol Oncol ; 13(1): 27, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438856

ABSTRACT

Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/ß-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of ß-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.

2.
Med Oncol ; 39(12): 257, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224430

ABSTRACT

The process of cancer initiation and development is regulated via the transcriptional expression of cells going under genomic and epigenetic changes. Targeting epigenetic "readers", i.e., bromodomains (BRD) and post-translational modifications of nucleosomal histone proteins regulate gene expression in both cancerous and healthy cells. In this study, the new epigenetic agent BRD inhibitor PLX51107 and histone deacetylase (HDAC) inhibitor SAHA' s (Vorinostat) single/combined applications' reflections were analyzed in case of cell proliferation, cytotoxicity, apoptosis, cell cycle arrest, and finally target gene expression regulation upon both AML and healthy B-lymphocyte cells; HL60 and NCIBL2171, respectively; in vitro. Since mono treatments of either Vorinostat or Plx51107 regulated cellular responses such as growth, proliferation, apoptosis, and cell cycle arrest of tumor cells; their combination treatments exerted accelerated results. We detected that combined treatment of Plx51107 and Vorinostat strengthened effects detected upon leukemic cells for gaining more sensitization to the agents, decreasing cell proliferation, dramatically inducing apoptosis, and cell cycle arrest; thus regulating target gene expressions. We have shown for the first time that the newly analyzed BRD inhibitor Plx51107 could be a promising therapeutic approach for hematological malignancies and its mono or combined usage might support a rapid transition to clinical trials.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/pharmacology , Histone Deacetylases/therapeutic use , Histones , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Oxazoles , Pyridines , Pyrroles , Vorinostat/pharmacology , Vorinostat/therapeutic use
3.
Cancers (Basel) ; 13(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803654

ABSTRACT

Muscle-invasive urothelial carcinoma (UC) is treated with cisplatin-based chemotherapy, which is only moderately efficient, mostly due to development of resistance. New therapy approaches are therefore urgently needed. Epigenetic alterations due to frequent mutations in epigenetic regulators contribute to development of the disease and to treatment resistance, and provide targets for novel drug combination therapies. Here, we determined the cytotoxic impact of the second-generation bromodomain protein inhibitor (BETi) PLX51107 on UC cell lines (UCC) and normal HBLAK control cells. PLX51107 inhibited proliferation, induced apoptosis, and acted synergistically with the histone deacetylase inhibitor romidepsin. While PLX51107 caused significant DNA damage, DNA damage signaling and DNA repair were impeded, a state defined as BRCAness. Accordingly, the drug strongly synergized with cisplatin more efficiently than romidepsin, and with the PARP inhibitor talazoparib to inhibit proliferation and induce cell death in UCC. Thus, a BETi can be used to "episensitize" UC cells to cytotoxic chemotherapy and inhibitors of DNA repair by inducing BRCAness in non BRCA1/2 mutated cancers. In clinical applications, the synergy between PLX51107 and other drugs should permit significant dosage reductions to minimize effects on normal tissues.

4.
Endocr Relat Cancer ; 26(9): 739-750, 2019 09.
Article in English | MEDLINE | ID: mdl-31272080

ABSTRACT

Anaplastic thyroid cancer (ATC) is an aggressive malignancy with limited treatment options. We explored novel treatment modalities by targeting epigenetic modifications using inhibitors of BET (e.g. BRD4) activity. We evaluated the efficacy in the treatment of ATC of a novel BET inhibitor, PLX51107 (PLX), currently in clinical trials for other solid tumors and hematologic malignancies, alone or combined with a MEK inhibitor, PD0325901(PD). To elucidate the effects of these inhibitors on growth of ATC, we treated ATC cells derived from patient tumors (THJ-11T and THJ-16T cells) and mouse xenograft tumors with inhibitors. We found PLX and PD inhibitors singly inhibited proliferation of both human ATC cells lines, but together exhibited stronger inhibition of proliferation. In mouse xenografts, the combination treatment almost totally blocked growth in xenograft tumors derived from both ATC cells. PD effectively attenuated MEK-ERK signaling, which was further enhanced by PLX in the combined treatment in cultured cells and tumors. Importantly, the combination of PLX and PD acted synergistically to suppress MYC transcription to increase p27 in decreasing tumor cell proliferation. PLX and PD cooperated to upregulate pro-apoptotic proteins to promote apoptosis. These two inhibitors converged to reduce the binding of BRD4 to the MYC promoter to suppress the MYC expression. These findings indicate that combined treatment of BET and MEK-ERK inhibitors was more effective to treat ATC than single targeted treatment. Synergistic suppression of MYC transcription via collaborative actions on chromatin modifications suggested that targeting epigenetic modifications could provide novel treatment opportunities for ATC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzamides/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Diphenylamine/analogs & derivatives , MAP Kinase Kinase 1/antagonists & inhibitors , Oxazoles/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Transcription Factors/antagonists & inhibitors , Animals , Apoptosis/drug effects , Benzamides/administration & dosage , Cell Proliferation/drug effects , Diphenylamine/administration & dosage , Diphenylamine/pharmacology , Drug Synergism , Female , Humans , Mice , Mice, Nude , Oxazoles/administration & dosage , Pyridines/administration & dosage , Pyrroles/administration & dosage , Thyroid Carcinoma, Anaplastic/enzymology , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/enzymology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL