Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
J Pediatr ; 275: 114241, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151604

ABSTRACT

OBJECTIVE: To determine the association between indoor air pollution and respiratory morbidities in children with bronchopulmonary dysplasia (BPD) recruited from the multicenter BPD Collaborative. STUDY DESIGN: A cross-sectional study was performed among participants <3 years old in the BPD Collaborative Outpatient Registry. Indoor air pollution was defined as any reported exposure to tobacco or marijuana smoke, electronic cigarette emissions, gas stoves, and/or wood stoves. Clinical data included acute care use and chronic respiratory symptoms in the past 4 weeks. RESULTS: A total of 1011 participants born at a mean gestational age of 26.4 ± 2.2 weeks were included. Most (66.6%) had severe BPD. More than 40% of participants were exposed to ≥1 source of indoor air pollution. The odds of reporting an emergency department visit (OR, 1.7; 95% CI, 1.18-2.45), antibiotic use (OR, 1.9; 95% CI, 1.12-3.21), or a systemic steroid course (OR, 2.18; 95% CI, 1.24-3.84) were significantly higher in participants reporting exposure to secondhand smoke (SHS) compared with those without SHS exposure. Participants reporting exposure to air pollution (not including SHS) also had a significantly greater odds (OR, 1.48; 95% CI, 1.08-2.03) of antibiotic use as well. Indoor air pollution exposure (including SHS) was not associated with chronic respiratory symptoms or rescue medication use. CONCLUSIONS: Exposure to indoor air pollution, especially SHS, was associated with acute respiratory morbidities, including emergency department visits, antibiotics for respiratory illnesses, and systemic steroid use.

2.
Chemosphere ; 362: 142622, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880264

ABSTRACT

The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 µg/mL SEOM-PM2.5. Exposure to 5 µg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 µg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.


Subject(s)
Air Pollutants , Bronchi , Cell Survival , Epithelial Cells , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Solvents , Humans , Epithelial Cells/drug effects , Particulate Matter/toxicity , Cell Line , Air Pollutants/toxicity , Cell Survival/drug effects , Bronchi/cytology , Bronchi/drug effects , Solvents/toxicity , Solvents/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity , Mexico , Reactive Oxygen Species/metabolism
3.
Atmos Environ (1994) ; 319: 120301, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38827432

ABSTRACT

Numerous studies have used air quality models to estimate pollutant concentrations in the Metropolitan Area of São Paulo (MASP) by using different inputs and assumptions. Our objectives are to summarize these studies, compare their performance, configurations, and inputs, and recommend areas of further research. We examined 29 air quality modeling studies that focused on ozone (O3) and fine particulate matter (PM2.5) performed over the MASP, published from 2001 to 2023. The California Institute of Technology airshed model (CIT) was the most used offline model, while the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was the most used online model. Because the main source of air pollution in the MASP is the vehicular fleet, it is commonly used as the only anthropogenic input emissions. Simulation periods were typically the end of winter and during spring, seasons with higher O3 and PM2.5 concentrations. Model performance for hourly ozone is good with half of the studies with Pearson correlation above 0.6 and root mean square error (RMSE) ranging from 7.7 to 27.1 ppb. Fewer studies modeled PM2.5 and their performance is not as good as ozone estimates. Lack of information on emission sources, pollutant measurements, and urban meteorology parameters is the main limitation to perform air quality modeling. Nevertheless, researchers have used measurement campaign data to update emission factors, estimate temporal emission profiles, and estimate volatile organic compounds (VOCs) and aerosol speciation. They also tested different emission spatial disaggregation approaches and transitioned to global meteorological reanalysis with a higher spatial resolution. Areas of research to explore are further evaluation of models' physics and chemical configurations, the impact of climate change on air quality, the use of satellite data, data assimilation techniques, and using model results in health impact studies. This work provides an overview of advancements in air quality modeling within the MASP and offers practical approaches for modeling air quality in other South American cities with limited data, particularly those heavily impacted by vehicle emissions.

4.
Int. j. morphol ; 42(3): 647-662, jun. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1564610

ABSTRACT

SUMMARY: The study explores the relationship between chronic exposure to fine particulate matter (PM2.5), sourced from wood smoke, and the histological structure and endocrine function of the uterus in nulliparous adult rats. It assesses potential structural changes in the uterus that could impact reproductive health, viewing PM2.5 exposure as a possible risk factor. A controlled experiment was conducted in a city known for high air pollution levels, exposing rats to filtered and unfiltered air conditions, thus mimicking human PM2.5 exposure. Histological findings indicated a significant increase in collagen density and uterine wall thickness in PM2.5 exposed subjects, suggesting a reproductive function risk. However, no significant differences were observed in progesterone and estradiol hormone levels, pointing to the complex relationship between PM2.5 exposure and its endocrine impact, and emphasizing the need for further studies for a deeper understanding. This work highlights the importance of thoroughly investigating the long-term effects of PM2.5 pollution on reproductive health, underlining the significance of considering environmental exposure as a critical factor in reproductive health research.


El estudio explora la relación entre la exposición crónica a partículas finas (PM2,5), procedentes del humo de leña, y la estructura histológica y la función endocrina del útero en ratas adultas nulíparas. Evalúa posibles cambios estructurales en el útero que podrían afectar la salud reproductiva, considerando la exposición a PM2,5 como un posible factor de riesgo. Se llevó a cabo un experimento controlado en una ciudad conocida por sus altos niveles de contaminación del aire, exponiendo ratas a condiciones de aire filtrado y sin filtrar, imitando así la exposición humana a PM2,5. Los hallazgos histológicos indicaron un aumento significativo en la densidad del colágeno y el grosor de la pared uterina en sujetos expuestos a PM2,5, lo que sugiere un riesgo para la función reproductiva. Sin embargo, no se observaron diferencias significativas en los niveles de las hormonas progesterona y estradiol, lo que apunta a la compleja relación entre la exposición a PM2,5 y su impacto endocrino, y enfatiza la necesidad de realizar más estudios para una comprensión más profunda. Este trabajo destaca la importancia de investigar a fondo los efectos a largo plazo de la contaminación por PM2,5 en la salud reproductiva, subrayando la importancia de considerar la exposición ambiental como un factor crítico en la investigación de la salud reproductiva.


Subject(s)
Animals , Female , Rats , Smoke/adverse effects , Uterus/drug effects , Wood , Rats, Sprague-Dawley , Air Pollutants/toxicity , Air Pollution , Particulate Matter/toxicity , Genitalia, Female/drug effects
5.
Environ Monit Assess ; 196(5): 452, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613696

ABSTRACT

The Metropolitan Area of Lima-Callao (MALC) is a South American megacity that has suffered a serious deterioration in air quality due to high levels of particulate matter (PM2.5 and PM10). Studies on the behavior of the PM2.5/PM10 ratio and its temporal variability in relation to meteorological parameters are still very limited. The objective of this study was to analyze the temporal trends of the PM2.5/PM10 ratio, its temporal variability, and its association with meteorological variables over a period of 5 years (2015-2019). For this, the Theil-Sen estimator, bivariate polar plots, and correlation analysis were used. The regions of highest mean concentrations of PM2.5 and PM10 were identified at eastern Lima (ATE station-41.2 µg/m3) and southern Lima (VMT station-126.7 µg/m3), respectively. The lowest concentrations were recorded in downtown Lima (CDM station-16.8 µg/m3 and 34.0 µg/m3, respectively). The highest average PM2.5/PM10 ratio was found at the CDM station (0.55) and the lowest at the VMT station (0.27), indicating a predominance of emissions from the vehicular fleet within central Lima and a greater emission of coarse particles by resuspension in southern Lima. The temporal progression of the ratio of PM2.5/PM10 showed positive and highly significant trends in northern and central Lima with values of 0.03 and 0.1 units of PM2.5/PM10 per year, respectively. In the southern region of Lima, the trend was also significant, showcasing a value of 0.02 units of PM2.5/PM10 per year. At the hourly and monthly level, the PM2.5/PM10 ratio presented a negative and significant correlation with wind speed and air temperature, and a positive and significant correlation with relative humidity. These findings offer insights into identifying the sources of PM pollution and are useful for implementing regulations to reduce air emissions considering both anthropogenic sources and meteorological dispersion patterns.


Subject(s)
Bivalvia , Environmental Monitoring , Animals , Peru , Meteorological Concepts , Particulate Matter
6.
Sci Total Environ ; 926: 171933, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522535

ABSTRACT

Air pollution is a worldwide environmental problem with an impact on human health. Particulate matter of ten micrometers or less aerodynamic diameter (PM10) as well as its fine fraction (PM2.5) is related to multiple pulmonary diseases. The impact of air pollution in Mexico City, and importantly, particulate matter has been studied and considered as a risk factor for two decades ago. Previous studies have reported the composition of Mexico City particulate matter, as well as the biological effects induced by this material. However, material collected and used in previous studies is a limited resource, and sampling and particle recovery techniques have been improved. In this study, we describe the methods used in our laboratory for Mexico City airborne particulate matter PM10 and PM2.5 sampling, considering the years 2017, 2018 and 2019. We also analyzed the PM10 and PM2.5 samples obtained to determine their composition. Finally, we exposed lung cell line cultures to PM10 and PM2.5 to evaluate the biological effect of the material in terms of cell viability, cell death, inflammatory response, and cytogenetic alterations. Our results showed that PM10 composition includes inorganic, organic and biological compounds, while PM2.5 is a mixture of more enriched organic compounds. PM10 and PM2.5 treatment in lung cells does not significantly impact cell viability/cell death. However, PM10 and PM2.5 increase the secretion levels of IL-6. Moreover, PM10 as well as PM2.5 induce cytogenetic alterations, such as micronuclei, anaphase bridges, trinucleated cells and apoptotic cells in lung cells. Our results update the evidence of the composition and biological effects of Mexico City particulate matter and provide us a reliable basis for future approaches.


Subject(s)
Air Pollutants , Air Pollution , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Mexico , Air Pollution/analysis , Cities , Particle Size
7.
J Hazard Mater ; 467: 133676, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38354440

ABSTRACT

Enormous health burden has been associated with air pollution and its effects continue to grow. However, the impact of air pollution on labour productivity at the population level is still unknown. This study assessed the association between premature death due to PM2.5 exposure and the loss of productivity-adjusted life years (PALYs), in Brazil. We applied a novel variant of the difference-in-difference (DID) approach to assess the association. Daily all-cause mortality data in Brazil were collected from 2000-2019. The PALYs lost increased by 5.11% (95% CI: 4.10-6.13%), for every 10 µg/m3 increase in the 2-day moving average of PM2.5. A total of 9,219,995 (95% CI: 7,491,634-10,921,141) PALYs lost and US$ 268.05 (95% CI: 217.82-317.50) billion economic costs were attributed to PM2.5 exposure, corresponding to 7.37% (95% CI: 5.99-8.73%) of the total PALYs lost due to premature death. This study also found that 5,005,306 PALYs could be avoided if the World Health Organization (WHO) air quality guideline (AQG) level was met. In conclusion, this study demonstrates that ambient PM2.5 exposure is associated with a considerable labour productivity burden relating to premature death in Brazil, while over half of the burden could be prevented if the WHO AQG was met. The findings highlight the need to reduce ambient PM2.5 levels and provide strong evidence for the development of strategies to mitigate the economic impacts of air pollution.


Subject(s)
Air Pollution , Brazil/epidemiology , Quality-Adjusted Life Years , Particulate Matter
8.
Heliyon ; 10(2): e24724, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298733

ABSTRACT

Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the factors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists' exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 µg m-3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.

9.
Health Econ ; 33(3): 482-508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010262

ABSTRACT

In this paper, we study the short-term effect of fine particulate matter (PM 2.5) exposure on respiratory emergency room (ER) visits in Chile, a middle-income country with high levels of air pollution. To instrument for PM 2.5, we use wind speed at different altitudes (pressure levels). Unlike previous papers, our data allow us to study the impact of high pollution levels across all age groups. We find that a 1 µg per cubic meter (µg/m3 ) increase in PM 2.5 exposure for 1 day increases ER visits for respiratory illness by 0.36%. The effect is positive and significant for all age groups. Furthermore, the coefficients on government environmental alerts suggest that avoidance behavior becomes increasingly significant across all age groups as restrictions become more severe.


Subject(s)
Air Pollution , Emergency Room Visits , Humans , Air Pollution/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis , Emergency Service, Hospital , Chile
10.
Braz. j. biol ; 84: e252471, 2024. graf
Article in English | LILACS, VETINDEX | ID: biblio-1355868

ABSTRACT

Abstract Smog has become the fifth season of Pakistan especially in Lahore city. Increased level of air pollutants (primary and secondary) are thought to be responsible for the formation of smog in Lahore. Therefore, the current study was carried out for the evaluation of air pollutants (primary and secondary) of smog in Wagah border particularly and other sites (Jail road, Gulburg) Lahore. For this purpose, baseline data on winter smog from March to December on primary and secondary air pollutants and meteorological parameters was collected from Environmental Protection Department and Pakistan Meteorological Department respectively. Devices being used in both departments for analysis of parameters were also studied. Collected data was further statistically analyzed to determine the correlation of parameters with meteorological conditions and was subjected to air quality index. According to results, PM 10 and PM 2.5 were found very high above the NEQS. NOx concentrations were also high above the permissible limits whereas SO2 and O3 were found below the NEQS thus have no roles in smog formation. Air Quality Index (AQI) of pollutants was PM 2.5(86-227), PM 10 (46-332), NOx (26-110), O3 (19-84) and SO2 (10-95). AQI of PM 2.5 remained between moderate to very unhealthy levels. AQI of PM 10 remained between good to hazardous levels. AQI of NOx remained between good to unhealthy for sensitive groups' levels. AQI of O3 and SO2 remained between good to moderate levels. Pearson correlation showed that every pollutant has a different relation with different or same parameters in different areas. It is concluded from the present study that particulate matter was much more responsible for smog formation. Although NOx also played role in smog formation. So there is need to reduce sources of particulate matter and NOx specifically in order to reduce smog formation in Lahore.


Resumo Smog tornou-se a quinta estação do Paquistão, especialmente na cidade de Lahore. Acredita-se que o aumento do nível de poluentes atmosféricos (primários e secundários) seja responsável pela formação de poluição atmosférica em Lahore. Portanto, o presente estudo foi realizado para a avaliação dos poluentes atmosféricos (primários e secundários) do smog na fronteira de Wagah em particular e em outros locais (Jail road, Gulburg) Lahore. Para este propósito, os dados de referência sobre a poluição atmosférica de inverno de março a dezembro sobre poluentes atmosféricos primários e secundários e parâmetros meteorológicos foram coletados do Departamento de Proteção Ambiental e do Departamento Meteorológico do Paquistão, respectivamente. Dispositivos sendo usados ​​em ambos os departamentos para análise de parâmetros também foram estudados. Os dados coletados foram posteriormente analisados ​​estatisticamente para determinar a correlação dos parâmetros com as condições meteorológicas e foram submetidos ao índice de qualidade do ar. De acordo com os resultados, PM 10 e PM 2,5 foram encontrados muito acima do NEQS. As concentrações de NOx também estavam muito acima dos limites permitidos, enquanto SO2 e O3 foram encontrados abaixo do NEQS, portanto, não têm papéis na formação de smog. O índice de qualidade do ar (AQI) de poluentes foi PM 2,5 (86-227), PM 10 (46-332), NOx (26-110), O3 (19-84) e SO2 (10-95). O AQI de PM 2,5 permaneceu entre níveis moderados a muito prejudiciais à saúde. O AQI de PM 10 permaneceu entre níveis bons e perigosos. AQI de NOx permaneceu entre bom e não saudável para os níveis de grupos sensíveis. O AQI de O3 e SO2 permaneceu entre níveis bons a moderados. A correlação de Pearson mostrou que cada poluente tem uma relação diferente com parâmetros diferentes ou iguais em áreas diferentes. Conclui-se do presente estudo que o material particulado foi muito mais responsável pela formação de smog. Embora o NOx também tenha desempenhado um papel na formação do smog. Portanto, é necessário reduzir as fontes de partículas e NOx, especificamente para reduzir a formação de smog em Lahore.


Subject(s)
Air Pollutants/analysis , Air Pollutants/adverse effects , Pakistan , Smog , Environmental Monitoring , Cities , Particulate Matter/analysis
11.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469289

ABSTRACT

Abstract Smog has become the fifth season of Pakistan especially in Lahore city. Increased level of air pollutants (primary and secondary) are thought to be responsible for the formation of smog in Lahore. Therefore, the current study was carried out for the evaluation of air pollutants (primary and secondary) of smog in Wagah border particularly and other sites (Jail road, Gulburg) Lahore. For this purpose, baseline data on winter smog from March to December on primary and secondary air pollutants and meteorological parameters was collected from Environmental Protection Department and Pakistan Meteorological Department respectively. Devices being used in both departments for analysis of parameters were also studied. Collected data was further statistically analyzed to determine the correlation of parameters with meteorological conditions and was subjected to air quality index. According to results, PM 10 and PM 2.5 were found very high above the NEQS. NOx concentrations were also high above the permissible limits whereas SO2 and O3 were found below the NEQS thus have no roles in smog formation. Air Quality Index (AQI) of pollutants was PM 2.5(86-227), PM 10 (46-332), NOx (26-110), O3 (19-84) and SO2 (10-95). AQI of PM 2.5 remained between moderate to very unhealthy levels. AQI of PM 10 remained between good to hazardous levels. AQI of NOx remained between good to unhealthy for sensitive groups levels. AQI of O3 and SO2 remained between good to moderate levels. Pearson correlation showed that every pollutant has a different relation with different or same parameters in different areas. It is concluded from the present study that particulate matter was much more responsible for smog formation. Although NOx also played role in smog formation. So there is need to reduce sources of particulate matter and NOx specifically in order to reduce smog formation in Lahore.


Resumo Smog tornou-se a quinta estação do Paquistão, especialmente na cidade de Lahore. Acredita-se que o aumento do nível de poluentes atmosféricos (primários e secundários) seja responsável pela formação de poluição atmosférica em Lahore. Portanto, o presente estudo foi realizado para a avaliação dos poluentes atmosféricos (primários e secundários) do smog na fronteira de Wagah em particular e em outros locais (Jail road, Gulburg) Lahore. Para este propósito, os dados de referência sobre a poluição atmosférica de inverno de março a dezembro sobre poluentes atmosféricos primários e secundários e parâmetros meteorológicos foram coletados do Departamento de Proteção Ambiental e do Departamento Meteorológico do Paquistão, respectivamente. Dispositivos sendo usados em ambos os departamentos para análise de parâmetros também foram estudados. Os dados coletados foram posteriormente analisados estatisticamente para determinar a correlação dos parâmetros com as condições meteorológicas e foram submetidos ao índice de qualidade do ar. De acordo com os resultados, PM 10 e PM 2,5 foram encontrados muito acima do NEQS. As concentrações de NOx também estavam muito acima dos limites permitidos, enquanto SO2 e O3 foram encontrados abaixo do NEQS, portanto, não têm papéis na formação de smog. O índice de qualidade do ar (AQI) de poluentes foi PM 2,5 (86-227), PM 10 (46-332), NOx (26-110), O3 (19-84) e SO2 (10-95). O AQI de PM 2,5 permaneceu entre níveis moderados a muito prejudiciais à saúde. O AQI de PM 10 permaneceu entre níveis bons e perigosos. AQI de NOx permaneceu entre bom e não saudável para os níveis de grupos sensíveis. O AQI de O3 e SO2 permaneceu entre níveis bons a moderados. A correlação de Pearson mostrou que cada poluente tem uma relação diferente com parâmetros diferentes ou iguais em áreas diferentes. Conclui-se do presente estudo que o material particulado foi muito mais responsável pela formação de smog. Embora o NOx também tenha desempenhado um papel na formação do smog. Portanto, é necessário reduzir as fontes de partículas e NOx, especificamente para reduzir a formação de smog em Lahore.

12.
Public Health ; 225: 311-319, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972494

ABSTRACT

OBJECTIVES: In 2020, Brazil experienced two concurrent public health challenges related to respiratory disease: wildfires and increased mortality due to the coronavirus (COVID-19) pandemic. Smoke from these wildfires contributed to a variety of air pollutants, including fine particulate matter (PM2.5). The present study aims to investigate the effects of environmental and socio-economic factors on COVID-19 hospitalisation in the Pantanal. STUDY DESIGN: Ecological retrospective study. METHODS: We applied a multilevel negative binomial model to relate monthly hospitalisation data with environmental variables. RESULTS: We showed that monthly PM2.5 concentration levels had the greatest influence on the increase in hospitalisations by COVID-19 in the elderly (23 % increase). The Gini index, a coefficient that reflects income inequalities, also had a positive association with COVID-19 hospitalisations (18 % increase). Higher temperatures and humidity were protective factors, showing a 15 % and 14 % decrease in hospitalisations, respectively. The results of the present study suggest that high PM2.5 exposure contributed to the increase in COVID-19 hospitalisations, as did the social inequalities of each municipality. CONCLUSIONS: The present study highlights the importance of gathering evidence supported by multiple information sources to guide decision-making and identify populations needing better public health systems.


Subject(s)
COVID-19 , Wildfires , Humans , Aged , Smoke/adverse effects , Wetlands , Retrospective Studies , Brazil/epidemiology , COVID-19/epidemiology , Particulate Matter/analysis
13.
Environ Health ; 22(1): 70, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848890

ABSTRACT

BACKGROUND: Satellite-based PM2.5 predictions are being used to advance exposure science and air-pollution epidemiology in developed countries; including emerging evidence about the impacts of PM2.5 on acute health outcomes beyond the cardiovascular and respiratory systems, and the potential modifying effects from individual-level factors in these associations. Research on these topics is lacking in low and middle income countries. We aimed to explore the association between short-term exposure to PM2.5 with broad-category and cause-specific mortality outcomes in the Mexico City Metropolitan Area (MCMA), and potential effect modification by age, sex, and SES characteristics in such associations. METHODS: We used a time-stratified case-crossover study design with 1,479,950 non-accidental deaths from the MCMA for the period of 2004-2019. Daily 1 × 1 km PM2.5 (median = 23.4 µg/m3; IQR = 13.6 µg/m3) estimates from our satellite-based regional model were employed for exposure assessment at the sub-municipality level. Associations between PM2.5 with broad-category (organ-system) and cause-specific mortality outcomes were estimated with distributed lag conditional logistic models. We also fit models stratifying by potential individual-level effect modifiers including; age, sex, and individual SES-related characteristics namely: education, health insurance coverage, and job categories. Odds ratios were converted into percent increase for ease of interpretation. RESULTS: PM2.5 exposure was associated with broad-category mortality outcomes, including all non-accidental, cardiovascular, cerebrovascular, respiratory, and digestive mortality. A 10-µg/m3 PM2.5 higher cumulative exposure over one week (lag06) was associated with higher cause-specific mortality outcomes including hypertensive disease [2.28% (95%CI: 0.26%-4.33%)], acute ischemic heart disease [1.61% (95%CI: 0.59%-2.64%)], other forms of heart disease [2.39% (95%CI: -0.35%-5.20%)], hemorrhagic stroke [3.63% (95%CI: 0.79%-6.55%)], influenza and pneumonia [4.91% (95%CI: 2.84%-7.02%)], chronic respiratory disease [2.49% (95%CI: 0.71%-4.31%)], diseases of the liver [1.85% (95%CI: 0.31%-3.41%)], and renal failure [3.48% (95%CI: 0.79%-6.24%)]. No differences in effect size of associations were observed between age, sex and SES strata. CONCLUSIONS: Exposure to PM2.5 was associated with non-accidental, broad-category and cause-specific mortality outcomes beyond the cardiovascular and respiratory systems, including specific death-causes from the digestive and genitourinary systems, with no indication of effect modification by individual-level characteristics.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cross-Over Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Mexico/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Male , Female
14.
Environ Epidemiol ; 7(4): e253, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37545809

ABSTRACT

Many Chilean cities suffer from high air pollution from industrial, mobile, and residential wood-burning sources. Several studies have linked PM2.5 air pollution exposure to higher mortality risk from cardiovascular, pulmonary, and lung cancer causes. In recent years, Chile has developed an extensive air pollution monitoring network to enforce air quality standards for PM2.5, allowing the study of the medium-term association between PM2.5 and mortality. Methods: A negative binomial regression model was used to study the association between 3-year average PM2.5 concentrations and age-adjusted mortality rates for 105 of the 345 municipalities in Chile. Models were fitted for all (ICD10 A to Q codes), cardiopulmonary (I and J), cardiovascular (I), pulmonary (J), cancer (C), and lung cancer (C33-C34) causes; controlling for meteorological, socioeconomic, and demographic characteristics. Results: A significant association of PM2.5 exposure with cardiopulmonary (relative risk for 10 µg/m3 PM2.5: 1.06; 95% confidence interval = 1.00, 1.13) and pulmonary (1.11; 1.02, 1.20) age-adjusted mortality rates was found. Cardiovascular (1.06; 0.99, 1.13) and all causes (1.02; 0.98, 1.07) were positive, but not significant. No significant association was found between cancer and lung cancer. The positive associations remained even when controlling for multiple confounding factors, model specifications, and when considering different methods for exposure characterization. These estimates are in line with results from cohort studies from the United States and European studies. Conclusion: Three-year average PM2.5 exposure is positively associated with the age-adjusted mortality rate for cardiopulmonary and cardiovascular causes in Chile. This provides evidence of the medium-term exposure effect of fine particles on long-term mortality rates.

15.
Environ Toxicol Pharmacol ; 101: 104170, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295738

ABSTRACT

In the vicinity of a petrochemical industrial region in São Paulo, Brazil, PM2.5-bound organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, oxy-PAHs, hopanes, and inorganic species were evaluated. Oxidative potential (OP), burden (OB), and Alivibrio fischeri bioluminescence inhibition (AFBIA) assays were conducted to determine the potential health effects of exposure to these compounds. The PM2.5 mean concentration was 32.0 ± 18.2 µg m-3, and benzo (a)pyrene was found to exceed recommended levels by at least four times. Secondary sources and vehicular emissions were indicated by nitro-PAHs, oxy-PAHs, and inorganic species. The OP and OB results revealed that secondary compounds favored antioxidant depletion. The AFBIA results showed that 64 % of the samples were toxic. These findings emphasize the need to reduce the exposure risk and take measures to protect human health.


Subject(s)
Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Environmental Monitoring/methods , Brazil , Polycyclic Aromatic Hydrocarbons/analysis , Carbon
16.
Air Qual Atmos Health ; : 1-20, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37359394

ABSTRACT

Abstract: A field study was carried out in the Metropolitan Area of Monterrey (MAM), the second most populated city in Mexico, characterized by increasing urbanization, high traffic density, and intense industrial activity. These characteristics commonly present high concentrations of air pollutants leading to the degradation of air quality. PM2.5 was analyzed for heavy metals at two urban sites located within the MAM (Juarez and San Bernabe) in order to determine sources, health risk, morphology, and elemental content during the COVID-19 pandemic (autumn 2020 and spring 2021). Twenty-four-hour samples of PM2.5 were collected at each site during 30-day periods using high-volume equipment. Gravimetric concentrations and 11 metals were measured (Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Ni, Cr, and Pb) by different analytical techniques (flame atomic absorption spectroscopy, graphite furnace atomic absorption spectroscopy, and inductively coupled plasma optical emission spectroscopy). Selected samples were analyzed by scanning electron microscopy-energy-disperse spectroscopy in order to characterize their morphology and elemental content. PM2.5 concentrations exceeded the Mexican standard and WHO guidelines in Juarez during spring 2021. Cu, Cd, and Co were highly enriched by anthropogenic sources, and Ni, K, Cr, and Pb had a moderate enrichment. Mg, Mn, and Ca were of crustal origin. Bivariate statistics and PCA confirmed that alkaline metals originated from crustal sources and that the main sources of trace metals included traffic emissions, resuspension from soil/road dust, steel industry, smelting, and non-exhaust emissions at both sites. Lifetime cancer risk coefficients did not exceed the permissible levels established by EPA and WHO, implying that local residents are not at risk of developing cancer. Non-carcinogenic risk coefficients revealed that there is a possible risk of suffering cardiovascular and respiratory diseases due to inhalation of cobalt at the study sites. Supplementary Information: The online version contains supplementary material available at 10.1007/s11869-023-01372-7.

17.
Toxicol Rep ; 11: 10-22, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37383489

ABSTRACT

Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.

18.
Biomolecules ; 13(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37371506

ABSTRACT

This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aß42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aß42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.


Subject(s)
Air Pollution , Alzheimer Disease , Apolipoprotein E4 , Particulate Matter , Suicide , Humans , Air Pollution/adverse effects , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Amyloid beta-Peptides , Apolipoprotein E4/genetics , Brain/pathology , Cities/epidemiology , Gene-Environment Interaction , Heterozygote , Mexico/epidemiology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/genetics , Particulate Matter/adverse effects , Suicide/statistics & numerical data
19.
Chemosphere ; 335: 139009, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37245594

ABSTRACT

BACKGROUND: PM2.5 exposure has been associated with intima-media thickness (cIMT) increase. However, very few studies distinguished between left and right cIMT in relation to PM2.5 exposure. AIM: To evaluate associations between chronic exposure to PM2.5 and cIMT at bilateral, left, and right in adults from Mexico City. METHODS: This study comprised 913 participants from the control group, participants without personal or family history of cardiovascular disease, of the Genetics of Atherosclerosis Disease Mexican study (GEA acronym in Spanish), recruited at the Instituto Nacional de Cardiología Ignacio Chávez from June 2008 to January 2013. To assess the associations between chronic exposure to PM2.5 (per 5 µg/m3 increase) at different lag years (1-4 years) and cIMT (bilateral, left, and right) we applied distributed lag non-linear models (DLNMs). RESULTS: The median and interquartile range for cIMT at bilateral, left, and right, were 630 (555, 735), 640 (550, 750), and 620 (530, 720) µm, respectively. Annual average PM2.5 exposure was 26.64 µg/m3, with median and IQR, of 24.46 (23.5-25.46) µg/m3. Results from DLNMs adjusted for age, sex, body mass index, low-density lipoproteins, and glucose, showed that PM2.5 exposure for year 1 and 2, were positively and significantly associated with right-cIMT [6.99% (95% CI: 3.67; 10.42) and 2.98% (0.03; 6.01), respectively]. Negative associations were observed for PM2.5 at year 3 and 4 and right-cIMT; however only year 3 was statistically significant [-2.83% (95% CI: 5.12; -0.50)]. Left-cIMT was not associated with PM2.5 exposure at any lag year. The increase in bilateral cIMT followed a similar pattern as that observed for right-cIMT, but with lower estimates. CONCLUSIONS: Our results suggest different susceptibility between left and right cIMT associated with PM2.5 exposure highlighting the need of measuring both, left and right cIMT, regarding ambient air pollution in epidemiological studies.


Subject(s)
Air Pollution , Carotid Intima-Media Thickness , Environmental Exposure , Adult , Humans , Air Pollutants , Air Pollution/statistics & numerical data , Atherosclerosis/epidemiology , Body Mass Index , Environmental Exposure/statistics & numerical data , Mexico/epidemiology , Particulate Matter
20.
Front Endocrinol (Lausanne) ; 14: 1069243, 2023.
Article in English | MEDLINE | ID: mdl-37082122

ABSTRACT

Introduction: The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition. Methods: Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders. Results: PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders. Discussion: Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.


Subject(s)
Air Pollution , Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Humans , Mice , Animals , Female , Male , Maternal Exposure/adverse effects , Leptin/metabolism , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Particulate Matter/adverse effects , Body Weight , Air Pollution/adverse effects , Energy Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL