Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biology (Basel) ; 12(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37626944

ABSTRACT

Mollusca represents one of the ancient bilaterian groups with high morphological diversity, while the formation mechanisms of the precursors of all germ cells, primordial germ cells (PGCs), have not yet been clarified in mollusks. PRDI-BF1 and RIZ homology domain-containing proteins (PRDMs) are a group of transcriptional repressors, and PRDM1 (also known as BLIMP1) and PRDM14 have been reported to be essential for the formation of PGCs. In the present study, we performed a genome-wide retrieval in Mulinia lateralis and identified 11 putative PRDMs, all of which possessed an N-terminal PR domain. Expressional profiles revealed that all these prdm genes showed specifically high expression levels in the given stages, implying that all PRDMs played important roles during early development stages. Specifically, Ml-prdm1 was highly expressed at the gastrula stage, the key period when PGCs arise, and was specifically localized in the cytoplasm of two or three cells of blastula, gastrula, or trochophore larvae, matching the typical characteristics of PGCs. These results suggested that Ml-prdm1-positive cells may be PGCs and that Ml-prdm1 could be a candidate marker for tracing the formation of PGCs in M. lateralis. In addition, the expression profiles of Ml-prdm14 hinted that it may not be associated with PGCs of M. lateralis. The present study provides insights into the evolution of the PRDM family in mollusks and offers a better understanding of the formation of PGCs in mollusks.

2.
Int J Mol Sci ; 19(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347759

ABSTRACT

The PR/SET domain gene family (PRDM) encodes 19 different transcription factors that share a subtype of the SET domain [Su(var)3-9, enhancer-of-zeste and trithorax] known as the PRDF1-RIZ (PR) homology domain. This domain, with its potential methyltransferase activity, is followed by a variable number of zinc-finger motifs, which likely mediate protein⁻protein, protein⁻RNA, or protein⁻DNA interactions. Intriguingly, almost all PRDM family members express different isoforms, which likely play opposite roles in oncogenesis. Remarkably, several studies have described alterations in most of the family members in malignancies. Here, to obtain a pan-cancer overview of the genomic and transcriptomic alterations of PRDM genes, we reanalyzed the Exome- and RNA-Seq public datasets available at The Cancer Genome Atlas portal. Overall, PRDM2, PRDM3/MECOM, PRDM9, PRDM16 and ZFPM2/FOG2 were the most mutated genes with pan-cancer frequencies of protein-affecting mutations higher than 1%. Moreover, we observed heterogeneity in the mutation frequencies of these genes across tumors, with cancer types also reaching a value of about 20% of mutated samples for a specific PRDM gene. Of note, ZFPM1/FOG1 mutations occurred in 50% of adrenocortical carcinoma patients and were localized in a hotspot region. These findings, together with OncodriveCLUST results, suggest it could be putatively considered a cancer driver gene in this malignancy. Finally, transcriptome analysis from RNA-Seq data of paired samples revealed that transcription of PRDMs was significantly altered in several tumors. Specifically, PRDM12 and PRDM13 were largely overexpressed in many cancers whereas PRDM16 and ZFPM2/FOG2 were often downregulated. Some of these findings were also confirmed by real-time-PCR on primary tumors.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , PR-SET Domains , Positive Regulatory Domain I-Binding Factor 1/genetics , Transcriptome , Databases, Genetic , Humans , Mutation Rate , Positive Regulatory Domain I-Binding Factor 1/chemistry , Positive Regulatory Domain I-Binding Factor 1/metabolism
3.
Biology (Basel) ; 5(4)2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27983647

ABSTRACT

Testicular germ cell tumors (TGCTs) derive from primordial germ cells. Their maturation is blocked at different stages, reflecting histological tumor subtypes. A common genetic alteration in TGCT is a deletion of the chromosome 1 short arm, where the PRDM2 gene, belonging to the Positive Regulatory domain gene (PRDM) family, is located. Expression of PRDM2 gene is shifted in different human tumors, where the expression of the two principal protein forms coded by PRDM2 gene, RIZ1 and RIZ2, is frequently unbalanced. Therefore, PRDM2 is actually considered a candidate tumor suppressor gene in different types of cancer. Although recent studies have demonstrated that PRDM gene family members have a pivotal role during the early stages of testicular development, no information are actually available on the involvement of these genes in TGCTs. In this article we show by qRT-PCR analysis that PRDM2 expression level is modulated by proliferation and differentiation agents such as estradiol, whose exposure during fetal life is probably an important risk factor for TGCTs development in adulthood. Furthermore in normal and cancer germ cell lines, PRDM2 binds estradiol receptor α (ERα) and influences proliferation, survival and apoptosis, as previously reported using MCF-7 breast cancer cell line, suggesting a potential tumor-suppressor role in TGCT formation.

SELECTION OF CITATIONS
SEARCH DETAIL