Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 843
Filter
1.
Sci Rep ; 14(1): 18326, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112526

ABSTRACT

Corynespora cassiicola is a highly diverse fungal pathogen that commonly occurs in tropical, subtropical, and greenhouse environments worldwide. In this study, the isolates were identified as C. cassiicola, and the optimum growth and sporulation were studied. The phenotypic characteristics of C. cassiicola, concerning 950 different growth conditions, were tested using Biolog PM plates 1-10. In addition, the strain of C. cassiicola DWZ from tobacco hosts was sequenced for the using Illumina PE150 and Pacbio technologies. The host resistance of tobacco Yunyan 87 with different maturity levels was investigated. In addition, the resistance evaluation of 10 common tobacco varieties was investigated. The results showed that C. cassiicola metabolized 89.47% of the tested carbon source, 100% of the nitrogen source, 100% of the phosphorus source, and 97.14% of the sulfur source. It can adapt to a variety of different osmotic pressure and pH environments, and has good decarboxylase and deaminase activities. The optimum conditions for pathogen growth and sporulation were 25-30 °C, and the growth was better on AEA and OA medium. The total length of the genome was 45.9 Mbp, the GC content was 51.23%, and a total of 13,061 protein-coding genes, 202 non-coding RNAs and 2801 and repeat sequences were predicted. Mature leaves were more susceptible than proper mature and immature leaves, and the average diameter of diseased spots reached 17.74 mm at 12 days. None of the tested ten cultivars exhibited obvious resistance to Corynespora leaf spot of tobacco, whereby all disease spot diameters reached > 10 mm and > 30 mm when at 5 and 10 days after inoculation, respectively. The phenotypic characteristics, genomic analysis of C. cassiicola and the cultivar resistance assessment of this pathogen have increased our understanding of Corynespora leaf spot of tobacco.


Subject(s)
Ascomycota , Nicotiana , Plant Diseases , Nicotiana/microbiology , Nicotiana/genetics , Ascomycota/genetics , Ascomycota/pathogenicity , Plant Diseases/microbiology , Plant Leaves/microbiology , Genomics/methods , Disease Resistance/genetics , Genome, Fungal , Phenotype
2.
Microbiol Resour Announc ; : e0039624, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177370

ABSTRACT

We report the complete genome sequence of Bacillus stercoris BST19, an isolate from the allotment soil in Tainan, Taiwan. The genome was obtained using the PacBio Sequel II platform, yielding a circular chromosome of 4,167,147 bp with a 43.9% GC content.

3.
Ann Pediatr Endocrinol Metab ; 29(3): 156-160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38956752

ABSTRACT

Recent advances in long-read next-generation sequencing (NGS) have enabled researchers to identify several pathogenic variants overlooked by short-read NGS, array-based comparative genomic hybridization, and other conventional methods. Long-read NGS is particularly useful in the detection of structural variants and repeat expansions. Furthermore, it can be used for mutation screening in difficultto- sequence regions, as well as for DNA-methylation analyses and haplotype phasing. This mini-review introduces the usefulness of long-read NGS in the molecular diagnosis of pediatric endocrine disorders.

4.
J Anim Sci Technol ; 66(3): 630-634, 2024 May.
Article in English | MEDLINE | ID: mdl-38975571

ABSTRACT

Latilactobacillus curvatus CACC879 originated from swine feces in Korea, and its probiotic properties have been analyzed. The complete genome of strain CACC879 contained one chromosome 1,398,247 bp in length and three circular plasmids, namely, pCACC879-1 (591,981 bp), pCACC879-2 (14,542 base pairs [bp]), and pCACC879-3 (45,393 bp). The complete genome encodes a total of 2,077 genes, including 25 rRNA genes and 90 tRNA genes. In addition, probiotic stability- genes acid/bile related to salts tolerance, the biosynthesis of cobalamin (vitamin B12), riboflavin (vitamin B2), and CRISPR/Cas9 were found in the whole genomes. Remarkably, L. curvatus CACC879 contained the antioxidant-related (peroxiredoxin) and bacteriocin-related genes (lysM and blpA). Overall, these results demonstrate that L. curvatus CACC879 is a functional probiotic candidate for animal industry applications.

5.
Food Microbiol ; 123: 104566, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038883

ABSTRACT

Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.


Subject(s)
Bacteria , Fermentation , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , China , Microbiota , Phylogeny , DNA, Bacterial/genetics , Biodiversity , Alcoholic Beverages/microbiology , Alcoholic Beverages/analysis , Food Microbiology , Metagenome , Fermented Foods/microbiology
6.
Gigascience ; 132024 01 02.
Article in English | MEDLINE | ID: mdl-38995143

ABSTRACT

BACKGROUND: Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS: Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION: The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.


Subject(s)
Genome , Male , Animals , Female , Perciformes/genetics , Sex Determination Processes/genetics , Sex Chromosomes/genetics , Genetic Markers , Genome-Wide Association Study , Synteny , Genomics/methods
7.
Front Microbiol ; 15: 1435765, 2024.
Article in English | MEDLINE | ID: mdl-39040905

ABSTRACT

Introduction: Fengxiangxing Huairang Daqu (FHD) is one of the major types of Daqu in China. However, the relationship between the microbial community structure at different stages, the changes in the sensory characteristics, fermentation characteristics, volatiles, the most critical process point, and the quality formation of FHD is not clear. Methods: Based on microscopic characterization, PacBio SMRT sequencing, and HS-SPME-GC-MS volatile metabolite analysis revealed the relationship between FHD quality formation and the dynamics of Qupi. Results: The results showed that the 12th day of the culture was the most critical process point, highlighting the most significant differences in microbial community structure, sensory characteristics, fermentation characteristics, and flavor substances. Bacillus licheniformis (43.25%), Saccharopolyspora rectivirgula (35.05%), Thermoascus aurantiacus (76.51%), Aspergillus amstelodami (10.81%), and Saccharomycopsis fibuligera (8.88%) were the dominant species in FHD. S. fibuligera, A. amstelodami, and T. aurantiacus were associated with the snow-white color of the FHD epidermis, the yellow color of the interior, and the gray-white color, respectively. The abundance of T. aurantiacus, A. amstelodami, B. licheniformis, and S. rectivirgula was positively associated with the esterifying power and liquefying power of FHD. The abundance of T. aurantiacus and A. amstelodami was positively correlated with the saccharifying power of FHD. The abundance of S. fibuligera was positively related to the fermenting power of FHD. A total of 248 volatiles were detected in Qupi, mainly including alcohols, esters, aldehydes, and ketones. Of them, eleven volatiles had a significant effect on the flavor of Qupi, such as 1-butanol-3-methyl-, hydrazinecarboxamide, ethanol, phenylethyl alcohol, ethyl acetate, 2-octanone, 1-octen-3-ol, formic acid-hexyl ester, (E)-2-octen-1-ol, ethyl hexanoate, and 2(3H)-furanone-dihydro-5-pentyl-. The abundance of B. licheniformis, S. rectivirgula, T. aurantiacus, and S. fibuligera was positively correlated with the alcohols, aromatic compounds, and phenols in FHD. The abundance of S. fibuligera was positively correlated with the acids, esters, and hydrocarbons in FHD. Discussion: These results indicate important theoretical basis and technical support for controllable adjustment of FHD microbial community structure, stable control of FHD quality, and precise, effective, and large-scale guidance of FHD production.

8.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957923

ABSTRACT

We present the first long-read de novo assembly and annotation of the luna moth (Actias luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly repetitive gene (>20 kb) essential in silk fiber production. There are >160,000 described species of moths and butterflies (Lepidoptera), but only within the last 5 years have we begun to recover high-quality annotated whole genomes across the order that capture h-fibroin. Using PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species. The assembled genome has a length of 532 Mb, a contig N50 of 16.8 Mb, an L50 of 14 contigs, and 99.4% completeness (BUSCO). Our annotation using Bombyx mori protein and A. luna RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267 functionally annotated proteins and a full-length h-fibroin annotation of 2,679 amino acid residues.


Subject(s)
Fibroins , Genome, Insect , Molecular Sequence Annotation , Moths , Animals , Moths/genetics , Fibroins/genetics , Silk/genetics , Insect Proteins/genetics , Bombyx/genetics , Repetitive Sequences, Nucleic Acid
9.
ISME J ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073909

ABSTRACT

The plant microbiome and plant-associated bacteria are known to support plant health, but there are limited studies on seed and seedling microbiome to reveal how seed-associated bacteria may confer disease resistance. In this study, the application of antibiotics on soybean seedlings indicated that seed-associated bacteria were involved in the seed rot resistance against a soil-borne pathogen Calonectria ilicicola, but this resistance cannot be carried to withstand root rot. Using PacBio 16S rRNA gene full-length sequencing and microbiome analyses, 14 amplicon sequence variants (ASVs) including 2 ASVs matching to Bacillus altitudinis were found to be more abundant in the 4 most resistant varieties versus the 4 most susceptible varieties. Culture-dependent isolation obtained two B. altitudinis isolates that both exhibit antagonistic capability against 6 fungal pathogens. Application of B. altitudinis on the most resistant and susceptible soybean varieties revealed different colonization compatibility, and the seed rot resistance was restored in the 5 varieties showing higher bacterial colonization. Moreover, qPCR confirmed the persistence of B. altitudinis on apical shoots till 21 days post-inoculation (dpi), but 9 dpi on roots of the resistant variety TN5. As for the susceptible variety HC, the persistence of B. altitudinis was only detected before 6 dpi on both shoots and roots. The short-term colonization of B. altitudinis on roots may explain the absence of root rot resistance. Collectively, this study advances the insight of B. altitudinis conferring soybean seed rot resistance and highlights the importance of considering bacterial compatibility with plant varieties and colonization persistence on plant tissues.

10.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38973368

ABSTRACT

This article describes a genome assembly and annotation for Bombus dahlbomii, the giant Patagonian bumble bee. DNA from a single, haploid male collected in Argentina was used for PacBio (HiFi) sequencing, and Hi-C technology was then used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high-quality, near chromosome-level assembly. The sequenced genome size is estimated at 265 Mb. The genome was annotated based on RNA sequencing data of another male from Argentina, and BRAKER3 produced 15,767 annotated genes. The genome and annotation show high completeness, with >95% BUSCO scores for both the genome and annotated genes (based on conserved genes from Hymenoptera). This genome provides a valuable resource for studying the biology of this iconic and endangered species, as well as for understanding the impacts of its decline and designing strategies for its preservation.


Subject(s)
Endangered Species , Genome, Insect , Molecular Sequence Annotation , Animals , Bees/genetics , Male , Chromosomes, Insect/genetics
11.
Am J Hum Genet ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39079539

ABSTRACT

A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.

12.
Microbiol Resour Announc ; 13(8): e0053224, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39012130

ABSTRACT

Because fluorinated organic compounds are broadly used and highly persistent, microbes isolated from wastewater may be able to degrade these contaminants. Here, we report the genome sequences of Flavobacterium sp. str. WV_118_3, Nocardioides sp. str. WV_118_6, Ochrobactrum anthropi str. WV_118_8, and Sphingomonas sp. str. VL_57B, isolated from wastewater.

13.
G3 (Bethesda) ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934790

ABSTRACT

Reniform and root-knot nematode are two of the most destructive pests of conventional upland cotton, Gossypium hirsutum, L. and continue to be a major threat to cotton fiber production in semi-arid regions of the southern United States and Central America. Fortunately, naturally occurring tolerance to these nematodes has been identified in the Pima cotton species (G. barbadense) and several upland cotton varieties (G. hirsutum), which has led to a robust breeding program that has successfully introgressed and stacked these independent resistant traits into several upland cotton lineages with superior agronomic traits, e.g. BAR 32-30 and BARBREN-713. This work identifies the genomic variations of these nematode tolerant accessions by comparing their respective genomes to the susceptible, high-quality fiber producing parental line of this lineage: Phytogen 355 (PSC355). We discover several large genomic differences within marker regions that harbor putative resistance genes as well as expression mechanisms shared by the two resistant lines, with respect to the susceptible PSC355 parental line. This work emphasizes the utility of whole genome comparisons as a means of elucidating large and small nuclear differences by lineage and phenotype.  .

14.
Sci Rep ; 14(1): 14514, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914624

ABSTRACT

The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.


Subject(s)
Anthozoa , Probiotics , Anthozoa/genetics , Anthozoa/microbiology , Anthozoa/metabolism , Animals , Indian Ocean , Genomics/methods , Bacteria/genetics , Microbiota
15.
DNA Res ; 31(4)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38847751

ABSTRACT

We present a complete, chromosome-scale reference genome for the long-distance migratory bat Pipistrellus nathusii. The genome encompasses both haplotypic sets of autosomes and the separation of both sex chromosomes by utilizing highly accurate long-reads and preserving long-range phasing information through the use of three-dimensional chromatin conformation capture sequencing (Hi-C). This genome, accompanied by a comprehensive protein-coding sequence annotation, provides a valuable genomic resource for future investigations into the genomic bases of long-distance migratory flight in bats as well as uncovering the genetic architecture, population structure and evolutionary history of Pipistrellus nathusii. The reference-quality genome presented here gives a fundamental resource to further our understanding of bat genetics and evolution, adding to the growing number of high-quality genetic resources in this field. Here, we demonstrate its use in the phylogenetic reconstruction of the order Chiroptera, and in particular, we present the resources to allow detailed investigations into the genetic drivers and adaptations related to long-distance migration.


Subject(s)
Animal Migration , Chiroptera , Genome , Haplotypes , Phylogeny , Chiroptera/genetics , Animals
16.
BMC Genomics ; 25(1): 601, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877407

ABSTRACT

BACKGROUND: The herbaceous peony (Paeonia lactiflora Pall.) is extensively cultivated in China due to its root being used as a traditional Chinese medicine known as 'Radix Paeoniae Alba'. In recent years, it has been discovered that its seeds incorporate abundant unsaturated fatty acids, thereby presenting a potential new oilseed plant. Surprisingly, little is known about the full-length transcriptome sequencing of Paeonia lactiflora, limiting research into its gene function and molecular mechanisms. RESULTS: A total of 484,931 Reads of Inserts (ROI) sequences and 1,455,771 full-Length non-chimeric reads (FLNC) sequences were obtained for CDS prediction, TF analysis, SSR analysis and lncRNA identification. In addition, gene function annotation and gene structure analysis were performed. A total of 4905 transcripts were related to lipid metabolism biosynthesis pathway, belonging to 28 enzymes. We use these data to identify 10 oleosin (OLE) and 5 diacylglycerol acyltransferase (DGAT) gene members after de-redundancy. The analysis of physicochemical properties and secondary structure showed them similarity in gene family respectively. The phylogenetic analysis showed that the distribution of OLE and DGAT family members was roughly the same as that of Arabidopsis. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed expression changes in different seed development stages, and showed a trend of increasing and then decreasing. CONCLUSION: In summary, these results provide new insights into the molecular mechanism of triacylglycerol (TAG) biosynthesis and storage during the seedling stage in Paeonia lactiflora. It provides theoretical references for selecting and breeding oil varieties and understanding the functions of oil storage as well as lipid synthesis related genes in Paeonia lactiflora.


Subject(s)
Paeonia , Seeds , Transcriptome , Triglycerides , Paeonia/genetics , Paeonia/metabolism , Paeonia/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Triglycerides/biosynthesis , Phylogeny , Gene Expression Regulation, Plant , Gene Expression Profiling , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Lipid Metabolism/genetics
17.
Elife ; 132024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832644

ABSTRACT

Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.


Humans and other animals have immune systems that protect them from bacteria, viruses and other potentially harmful microbes. Members of a family of genes known as the NLR family play various roles in helping to recognize and destroy these microbes. Different species have varying numbers of NLR genes, for example, humans have 22 NLRs, but fish can have hundreds. 400 have been found in the small tropical zebrafish, also known as zebra danios. Zebrafish are commonly used as model animals in research studies because they reproduce quickly and are easy to keep in fish tanks. Much of what we know about fish biology comes from studying strains of those laboratory zebrafish, including the 400 NLRs found in a specific laboratory strain. Many NLRs in zebrafish are extremely similar, suggesting that they have only evolved fairly recently through gene duplication. It remains unclear why laboratory zebrafish have so many almost identical NLRs, or if wild zebrafish also have lots of these genes. To find out more, Schäfer et al. sequenced the DNA of NLRs from almost 100 zebrafish from multiple wild and laboratory populations. The approach identified over 1,500 different NLR genes, most of which, were previously unknown. Computational modelling suggested that each wild population of zebrafish may harbour up to around 2,000 NLR genes, but laboratory strains had much fewer NLRs. The numbers of NLR genes in individual zebrafish varied greatly ­ only 4% of the genes were present in 80% or more of the fish. Many genes were only found in specific populations or single individuals. Together, these findings suggest that the NLR family has expanded in zebrafish as part of an ongoing evolutionary process that benefits the immune system of the fish. Similar trends have also been observed in the NLR genes of plants, indicating there may be an evolutionary strategy across all living things to continuously diversify large families of genes. Additionally, this work highlights the lack of diversity in the genes of laboratory animals compared with those of their wild relatives, which may impact how results from laboratory studies are used to inform conservation efforts or are interpreted in the context of human health.


Subject(s)
DNA Copy Number Variations , Zebrafish , Zebrafish/genetics , Zebrafish/immunology , Animals
18.
BMC Genom Data ; 25(1): 61, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886663

ABSTRACT

OBJECTIVES: As a traditional Chinese medicine, Lepidium apetalum is commonly used for purging the lung, relieving dyspnea, alleviating edema, and has the significant pharmacological effects on cardiovascular disease, hyperlipidemia, etc. In addition, the seeds of L. apetalum are rich in unsaturated fatty acids, sterols, glucosinolates and have a variety of biological activity compounds. To facilitate genomics, phylogenetic and secondary metabolite biosynthesis studies of L. apetalum, we assembled the high-resolution genome of L. apetalum. DATA DESCRIPTION: We completed chromosome-level genome assembly of the L. apetalum genome (2n = 32), using Illumina HiSeq and PacBio Sequel sequencing platform as well as high-throughput chromosome conformation capture (Hi-C) technique. The assembled genome was 296.80 Mb in size, 34.41% in GC content, and 23.89% in repeated sequence content, including 316 contigs with a contig N50 of 16.31 Mb. Hi-C scaffolding resulted in 16 chromosomes occupying 99.79% of the assembled genome sequences. A total of 46 584 genes and 105 pseudogenes were predicted, 98.37% of which can be annotated to Nr, GO, KEGG, TrEMBL, SwissPort, Pfam and KOG databases. The high-quality reference genome generated by this study will provide accurate genetic information for the molecular biology research of L. apetalum.


Subject(s)
Genome, Plant , Lepidium , Plants, Medicinal , Plants, Medicinal/genetics , Lepidium/genetics , Molecular Sequence Annotation , Chromosomes, Plant/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing , Phylogeny
19.
Virus Evol ; 10(1): veae019, 2024.
Article in English | MEDLINE | ID: mdl-38765465

ABSTRACT

Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing, which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence polymerase-chain reaction (PCR) amplicons derived from cDNA templates tagged with unique molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR. The use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Production of highly accurate sequences from the large datasets produced from SMRT-UMI sequencing is facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline). PORPIDpipeline automatically filters and parses circular consensus reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination, heteroduplex formation, or early cycle PCR errors. The optimized SMRT-UMI sequencing and PORPIDpipeline methods presented here represent a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus quasispecies in a virus transmitter-recipient pair of individuals.

20.
Plant Cell Physiol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38807462

ABSTRACT

Japanese green tea, an essential beverage in Japanese culture, is characterized by the initial steaming of freshly harvested leaves during production. This process efficiently inactivates endogenous enzymes such as polyphenol oxidases, resulting in the production of sencha, gyokuro, and matcha that preserves the vibrant green color of young leaves. Although genome sequences of several tea cultivars and germplasms have been published, no reference genome sequences are available for Japanese green tea cultivars. Here, we constructed a reference genome sequence of the cultivar 'Seimei', which is used to produce high-quality Japanese green tea. Using the PacBio HiFi and Hi-C technologies for chromosome-scale genome assembly, we obtained 15 chromosome sequences with a total genome size of 3.1 Gb and an N50 of 214.9 Mb. By analyzing the genomic diversity of 23 Japanese tea cultivars and lines, including the leading green tea cultivars 'Yabukita' and 'Saemidori', revealed several candidate genes that could be related to the characteristics of Japanese green tea. The reference genome of 'Seimei' and information on genomic diversity of Japanese green tea cultivars should provide crucial information for effective breeding of such cultivars in the future.

SELECTION OF CITATIONS
SEARCH DETAIL