Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Foods ; 13(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39272476

ABSTRACT

In Chile, honey is produced from several native species with interesting biological properties. Accordingly, those attributes are present in Chilean honeys owing to the presence of phenolic compounds inherited from specific floral sources. In recent years, the exported volume of Chilean honeys has been increased, reaching new markets with demanding regulations directed toward the fulfilment of consumers' expectations. Accordingly, there are countries with special requirements referring to Paenibacillus larvae spore-free honeys. This microorganism is the pathogen responsible for American foulbrood disease in beehives; however, antibiotics are not allowed when an apiary tests positive for P. larvae. On the other hand, it is mandatory to have an accurate method to remove the potential presence of spores in bee products intended for export. Exposure to ionizing radiation can be an efficient way to achieve this goal. In this work, 54 honey samples harvested from northern, central and southern Chile were analyzed for physicochemical patterns, total phenols, antioxidant activity and antiradical activity. Honeys with and without spores were exposed to ionizing radiation at three levels of intensity. Afterwards, the presence of spores and the effect on phenol bioavailability, antiradical activity and antioxidant activity were measured again. This research presents results showing a positive correlation between the percentage of prevalence of native endemic species in the set of honeys analyzed and the capacity to resist this process, without altering their natural attributes determined before irradiation treatments.

2.
Sci Rep ; 14(1): 19013, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152125

ABSTRACT

The beekeeping industry plays a crucial role in local economies, contributing significantly to their growth. However, bee colonies often face the threat of American foulbrood (AFB), a dangerous disease caused by the Gram-positive bacterium Paenibacillus larvae (P. l.). While the antibiotic Tylosin has been suggested as a treatment, its bacterial resistance necessitates the search for more effective alternatives. This investigation focused on evaluating the potential of bee venom (BV) and silver nanoparticles (Ag NPs) as antibacterial agents against AFB. In vitro treatments were conducted using isolated AFB bacterial samples, with various concentrations of BV and Ag NPs (average size: 25nm) applied individually and in combination. The treatments were administered under both light and dark conditions. The viability of the treatments was assessed by monitoring the lifespans of treated bees and evaluating the treatment's efficiency within bee populations. Promising results were obtained with the use of Ag NPs, which effectively inhibited the progression of AFB. Moreover, the combination of BV and Ag NPs, known as bee venom/silver nanocomposites (BV/Ag NCs), significantly extended the natural lifespan of bees from 27 to 40 days. Notably, oral administration of BV in varying concentrations (1.53, 3.12, and 6.25 mg/mL) through sugary syrup doubled the bees' lifespan compared to the control group. The study established a significant correlation between the concentration of each treatment and the extent of bacterial inhibition. BV/Ag NCs demonstrated 1.4 times greater bactericidal efficiency under photo-stimulation with visible light compared to darkness, suggesting that light exposure enhances the effectiveness of BV/Ag NCs. The combination of BV and Ag NPs demonstrated enhanced antibacterial efficacy and prolonged honeybee lifespan. These results offer insights that can contribute to the development of safer and more efficient antibacterial agents for maintaining honeybee health.


Subject(s)
Anti-Bacterial Agents , Bee Venoms , Metal Nanoparticles , Paenibacillus larvae , Silver , Animals , Bees/microbiology , Bee Venoms/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Paenibacillus larvae/drug effects , Longevity/drug effects
3.
Saudi J Biol Sci ; 31(6): 104002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706719

ABSTRACT

American foulbrood (AFB) is a harmful honeybee disease primarily caused by Paenibacillus larvae. The study aims to isolate and identify the AFB causative agent P. larvae and their specific phages to use as a new biological method for AFB disease control. Eight apiaries were inspected for AFB infections. Symptoms of diseased brood comb, were odd brood cells with soft brown decayed brood amongst healthy brood, were identified in the field and demonstrated the prevalence of AFB in every apiary. Three P. larvae isolates were identified using traditional techniques using a 452-bp PCR amplicon specific to the bacterial 16SrRNA gene and was compared between Paenibacillus isolates. Additionally, specific phages of P. larvae strains were applied to examine their efficiency in reducing the infection rate under the apiary condition. The infection rate was reduced to approximately 94.6 to 100 % through the application of a phage mixture, as opposed to 20 to 85.7 % when each phage was administered individually or 78.6 to 88.9 % when antibiotic treatment was implemented. Histological studies on phage-treated bee larvae revealed some cells regaining normal shape, with prominent nuclei and microvilli. The gastrointestinal tract showed normal longitudinal and circular muscles, unlike bee larvae treated with bacterial strains with abnormal and destroyed tissues, as shown by the basement membrane surrounding the mid-gut epithelium. Phage techniques exhibited promise in resolving the issue of AFB in honeybees due to their ease of application, comparatively lower cost, and practicality for beekeepers in terms of laboratory preparation.

4.
Insects ; 15(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786906

ABSTRACT

Honeybee diseases are one of the most significant and most common causes of honeybee colonies' weakness and death. An early diagnosis of subclinical infections is necessary to implement precautionary and control measures. Sampling debris from hive bottom boards is simple, non-invasive, and cheap. In this study, we collected winter debris samples in apiaries located in the continental part of Croatia. We used molecular methods, PCR and qPCR, for the first time to analyze those samples. Laboratory results were compared with the health condition and strength of honeybee colonies at an apiary in spring. Our study successfully identified the presence and quantity of various pathogens, including the presence of Vairimorpha spp. (Nosema spp.), quintefied Paenibacillus larvae, Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Deformed Wing Virus (DWV), and Sacbrood Virus (SBV). However, our analysis did not detect Melissococcus plutonius, Crithidia mellificae, Lotmaria passim, and Aethina tumida. Samples of winter debris were also examined for the presence and quantification of the V. destructor mites, and their natural mite fall was observed in spring. Honeybee colonies were simultaneously infected by an average of four to six pathogens. Some observed honeybee colonies developed characteristic symptoms, while others did not survive the winter.

5.
PeerJ ; 12: e17292, 2024.
Article in English | MEDLINE | ID: mdl-38818453

ABSTRACT

Background & Objectives: American foulbrood (AFB), caused by the highly virulent, spore-forming bacterium Paenibacillus larvae, poses a significant threat to honey bee brood. The widespread use of antibiotics not only fails to effectively combat the disease but also raises concerns regarding honey safety. The current computational study was attempted to identify a novel therapeutic drug target against P. larvae, a causative agent of American foulbrood disease in honey bee. Methods: We investigated effective novel drug targets through a comprehensive in silico pan-proteome and hierarchal subtractive sequence analysis. In total, 14 strains of P. larvae genomes were used to identify core genes. Subsequently, the core proteome was systematically narrowed down to a single protein predicted as the potential drug target. Alphafold software was then employed to predict the 3D structure of the potential drug target. Structural docking was carried out between a library of phytochemicals derived from traditional Chinese flora (n > 36,000) and the potential receptor using Autodock tool 1.5.6. Finally, molecular dynamics (MD) simulation study was conducted using GROMACS to assess the stability of the best-docked ligand. Results: Proteome mining led to the identification of Ketoacyl-ACP synthase III as a highly promising therapeutic target, making it a prime candidate for inhibitor screening. The subsequent virtual screening and MD simulation analyses further affirmed the selection of ZINC95910054 as a potent inhibitor, with the lowest binding energy. This finding presents significant promise in the battle against P. larvae. Conclusions: Computer aided drug design provides a novel approach for managing American foulbrood in honey bee populations, potentially mitigating its detrimental effects on both bee colonies and the honey industry.


Subject(s)
Paenibacillus larvae , Proteome , Animals , Bees/microbiology , Paenibacillus larvae/drug effects , Paenibacillus larvae/genetics , Paenibacillus larvae/metabolism , Proteome/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
6.
Insects ; 15(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667398

ABSTRACT

American foulbrood is an infectious disease of the honeybee brood that causes multiple types of damage to beekeeping. The causative agent of the disease is the bacterium Paenibacillus larvae, which forms resistant infective spores and is viable for decades. After the eradication measures have been implemented, in cases of clinically visible disease, it is necessary to conduct effective final disinfections of equipment and tools. This study aimed to determine the effect of ten commercially available and commonly used disinfectants on certified strains of P. larvae under laboratory conditions, as well as to compare the obtained results among individual genotypes of P. larvae. Selected products were tested by determining the zone of inhibition using an agar diffusion test, a suspension test for viable bacteria, a surface disinfectant test, and a sporicidal effect in the suspension test. Incidin OxyFoam S and Sekusept Aktiv are both effective against all examined genotypes of P. larvae. Despadac and Despadac Secure have a bactericidal effect, but their sporocidal effect is not as satisfactory as that of Genox. Genoll does not exhibit a sporicidal effect, and Ecocide S at 1%, Bee protect H forte, and Bee protect F did not exhibit a satisfactory sporocidal effect. Additionally, EM® PROBIOTIC FOR BEES did not exhibit any bactericidal effect. The effective application of control measures and proper application of final disinfection can reduce the reoccurrence of visible clinical signs of disease, whereas methods of early diagnosis can significantly reduce the incidence of the disease.

7.
Physiology (Bethesda) ; 39(4): 0, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38411571

ABSTRACT

Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.


Subject(s)
Pesticides , Animals , Bees/physiology , Host-Pathogen Interactions
8.
Folia Microbiol (Praha) ; 69(2): 415-421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180723

ABSTRACT

Paenibacillus larvae and Melissococcus plutonius represent the most threatening bacterial diseases of honeybee (Apis mellifera)-American and European foulbrood, respectively. For efficient control of those diseases, rapid and accurate detection of the pathogens is crucial. Therefore, we developed a novel multiplex PCR method simultaneously detecting both pathogens. To design and optimize multiplex PCR reaction, four strains of P. larvae representing four ERIC genotypes I-IV (strain DSM 7030-ERIC I, DSM 25430-ERIC II, LMG 16252-ERIC III, DSM 3615-ERIC IV) were selected. Those strains were fully sequenced using long-read sequencing (Sequel I, Pacific Biosciences). For P. larvae, the multicopy insertion sequence IS256 identified in all genotypes of P. larvae was selected to provide high sensitivity. M. plutonius was detected by plasmid pMP1 sequence and the virulence verified by following detection of ETX/MTX2 toxin responsible for pore formation in the cell membrane. As an internal control, a gene encoding for major royal jelly protein 1 specific for honeybees was selected. The method was validated on 36 clinical specimens collected from the colonies suffering from American and European foulbrood in the Czech Republic. Based on the results, sensitivity of PCR was calculated to 93.75% and specificity to 100% for P. larvae diagnosed from hive debris and 100% sensitivity and specificity for honeybee workers and larval scales as well as for diseased brood infected by M. plutonius.


Subject(s)
Enterococcaceae , Paenibacillus larvae , Paenibacillus , Bees/genetics , Animals , Paenibacillus larvae/genetics , DNA Transposable Elements , Larva/microbiology , Plasmids/genetics , Multiplex Polymerase Chain Reaction/methods , Paenibacillus/genetics
9.
Vet Res Commun ; 48(2): 889-899, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37989931

ABSTRACT

In recent years, natural alternatives have been sought for the control of beekeeping pathologies; in the case of American Foulbrood (AFB) disease, the use of synthetic antibiotics was prohibited due to honey contamination and the generation of resistant bacteria. The significant increase in population growth worldwide has led to great concern about the production of large amounts of waste, including those from agribusiness. Among the most important beverages consumed is coffee, generating thousands of tons of waste called spent coffee grounds (SCG). The SCG is a source of many bioactive compounds with known antimicrobial activity. The aims of the present work were: (1) to obtain and chemically analyse by HPLC of SCG extracts (SCGE), (2) to analyse the antimicrobial activity of SCGE against vegetative form of Paenibacillus larvae (the causal agent of AFB), (3) to evaluate the toxicity in bees of SCGE and (4) to analyse the effect of the extracts on the expression of various genes of the immune system of bees. SCGs have a high content of phenolic compounds, and the caffeine concentration was of 0.3%. The MIC value obtained was 166.667 µg/mL; the extract was not toxic to bees, and interestingly, overexpression of abaecin and hymenoptaecin peptides was observed. Thus, SCGE represents a promising alternative for application in the control of American Foulbrood and as a possible dietary supplement to strengthen the immune system of honeybees. Therefore, the concept of circular bio-economy could be applied from the coffee industry to the beekeeping industry.


Subject(s)
Paenibacillus larvae , Bees , Animals , Coffee , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Larva
10.
Int. microbiol ; 26(4): 1087-1101, Nov. 2023. graf
Article in English | IBECS | ID: ibc-227494

ABSTRACT

Recent research shows that Dicranum species can be used to ameliorate the negative effects of honeybee bacterial diseases and that novel compounds isolated from these species may have the potential to treat bacterial diseases. This study aimed to investigate the efficacy of Dicranum polysetum Sw. against American Foulbrood using toxicity and larval model. The effectiveness of D. polysetum Sw. ethanol extract in combating AFB was investigated in vitro and in vivo. This study is important in finding an alternative treatment or prophylactic method to prevent American Foulbrood disease in honey bee colonies. Spore and vegetative forms of Paenibacillus larvae PB31B with ethanol extract of D. polysetum were tested on 2040 honey bee larvae under controlled conditions. Total phenolic and flavonoid contents of D. polysetum ethanol extracts were determined as 80.72 mg/GAE(Gallic acid equivalent) and 303.20 µg/mL, respectively. DPPH(2,2-diphenyl-1-picrylhydrazyl) radical scavenging percent inhibition value was calculated as 4.32%. In Spodoptera frugiperda (Sf9) and Lymantria dispar (LD652) cell lines, the cytotoxic activities of D. polysetum extract were below 20% at 50 µg/mL. The extract was shown to considerably decrease infection in the larvae, and the infection was clinically halted when the extract was administered during the first 24 h after spore contamination. The fact that the extract contains potent antimicrobial/antioxidant activity does not reduce larval viability and live weight, and does not interact with royal jelly is a promising development, particularly regarding its use to treat early-stage AFB infection.(AU)


Subject(s)
Animals , Bacterial Infections , Paenibacillus larvae/physiology , Phenols/metabolism , Bees , Ethanol/metabolism , Larva/microbiology , Microbiology , Microbiological Techniques , Phenols/pharmacology , United States
11.
Rev Argent Microbiol ; 55(4): 317-331, 2023.
Article in English | MEDLINE | ID: mdl-37400312

ABSTRACT

Bacillus thuringiensis is an entomopathogen belonging to the Bacillus cereus clade. We isolated a tetracycline-resistant strain called m401, recovered it from honey, and identified it as Bacillus thuringiensis sv. kumamotoensis based on the average nucleotide identity calculations (ANIb) comparison and the analysis of the gyrB gene sequences of different B. thuringiensis serovars. Sequences with homology to virulence factors [cytK, nheA, nheB, nheC, hblA, hblB, hblC, hblD, entFM, and inhA] and tetracycline resistance genes [tet(45), tet(V), and tet(M)/tet(W)/tet(O)/tet(S) family] were identified in the bacterial chromosome. The prediction of plasmid-coding regions revealed homolog sequences to the MarR and TetR/AcrR family of transcriptional regulators, toxins, and lantipeptides. The genome mining analysis revealed 12 regions of biosynthetic gene clusters responsible for synthesizing secondary metabolites. We identified biosynthetic gene clusters coding for bacteriocins, siderophores, ribosomally synthesized post-translationally modified peptide products, and non-ribosomal peptide synthetase clusters that provide evidence for the possible use of Bt m401 as a biocontrol agent. Furthermore, Bt m401 showed high inhibition against all Paenibacillus larvae genotypes tested in vitro. In conclusion, Bt m401 owns various genes involved in different biological processes, such as transductional regulators associated with antibiotic resistance, toxins, and antimicrobial peptides with potential biotechnological and biocontrol applications.


Subject(s)
Bacillus thuringiensis , Bacillus thuringiensis/genetics , Food Microbiology , Phylogeny , Bacillus cereus , Anti-Bacterial Agents/pharmacology , Tetracycline/metabolism
12.
Phage (New Rochelle) ; 4(2): 68-81, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37350994

ABSTRACT

Background: Bacteriophages are becoming increasingly important in the race to find alternatives to antibiotics. Unfortunately, bacteriophages that might otherwise be useful are sometimes discarded due to low titers making them unsuitable for downstream applications. Methods: Here, we present two distinct approaches used to experimentally evolve novel New Zealand Paenibacillus larvae bacteriophages. The first approach uses the traditional agar-overlay method, whereas the other was a 96-well plate liquid infection protocol that improved phage titers in as little as four days. We also used a mathematical model to probe the parameters and limits of the RAMP-UP approach to rapidly select mutants that improve bacteriophage titers. Results: Both experimental approaches resulted in an increase in plaque-forming units (PFU/mL). The liquid infection approach developed here, which we call RAMP-UP for Rapid Adaptive Mutation of Phage - UP, was significantly faster and simpler, and allowed us to evolve high titer bacteriophages in as little as four days. Titers were increased from 100-100,000-fold relative to their ancestors. The resultant titers were sufficient to extract and sequence DNA from these bacteriophages. An analysis of these phage genomes is provided. Conclusion: The RAMP-UP protocol is an effective method for experimentally evolving previously intractable bacteriophages in a high-throughput and expeditious manner.

13.
BMC Microbiol ; 23(1): 150, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226109

ABSTRACT

BACKGROUND: American foulbrood (AFB) disease caused by Paenibacillus larvae is dangerous, and threatens beekeeping. The eco-friendly treatment method using probiotics is expected to be the prospective method for controlling this pathogen in honey bees. Therefore, this study investigated the bacterial species that have antimicrobial activity against P. larvae. RESULTS: Overall, 67 strains of the gut microbiome were isolated and identified in three phyla; the isolates had the following prevalence rates: Firmicutes 41/67 (61.19%), Actinobacteria 24/67 (35.82%), and Proteobacteria 2/67 (2.99%). Antimicrobial properties against P. larvae on agar plates were seen in 20 isolates of the genus Lactobacillus, Firmicutes phylum. Six representative strains from each species (L. apis HSY8_B25, L. panisapium PKH2_L3, L. melliventris HSY3_B5, L. kimbladii AHS3_B36, L. kullabergensis OMG2_B25, and L. mellis OMG2_B33) with the largest inhibition zones on agar plates were selected for in vitro larvae rearing challenges. The results showed that three isolates (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) had the potential to be probiotic candidates with the properties of safety to larvae, inhibition against P. larvae in infected larvae, and high adhesion ability. CONCLUSIONS: Overall, 20 strains of the genus Lactobacillus with antimicrobial properties against P. larvae were identified in this study. Three representative strains from different species (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) were evaluated to be potential probiotic candidates and were selected for probiotic development for the prevention of AFB. Importantly, the species L. panisapium isolated from larvae was identified with antimicrobial activity for the first time in this study.


Subject(s)
Actinobacteria , Paenibacillus larvae , Probiotics , Bees , Animals , Paenibacillus larvae/genetics , Agar , Larva , Firmicutes , Lactobacillus , Probiotics/pharmacology
14.
Int Microbiol ; 26(4): 1087-1101, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37097489

ABSTRACT

Recent research shows that Dicranum species can be used to ameliorate the negative effects of honeybee bacterial diseases and that novel compounds isolated from these species may have the potential to treat bacterial diseases. This study aimed to investigate the efficacy of Dicranum polysetum Sw. against American Foulbrood using toxicity and larval model. The effectiveness of D. polysetum Sw. ethanol extract in combating AFB was investigated in vitro and in vivo. This study is important in finding an alternative treatment or prophylactic method to prevent American Foulbrood disease in honey bee colonies. Spore and vegetative forms of Paenibacillus larvae PB31B with ethanol extract of D. polysetum were tested on 2040 honey bee larvae under controlled conditions. Total phenolic and flavonoid contents of D. polysetum ethanol extracts were determined as 80.72 mg/GAE(Gallic acid equivalent) and 303.20 µg/mL, respectively. DPPH(2,2-diphenyl-1-picrylhydrazyl) radical scavenging percent inhibition value was calculated as 4.32%. In Spodoptera frugiperda (Sf9) and Lymantria dispar (LD652) cell lines, the cytotoxic activities of D. polysetum extract were below 20% at 50 µg/mL. The extract was shown to considerably decrease infection in the larvae, and the infection was clinically halted when the extract was administered during the first 24 h after spore contamination. The fact that the extract contains potent antimicrobial/antioxidant activity does not reduce larval viability and live weight, and does not interact with royal jelly is a promising development, particularly regarding its use to treat early-stage AFB infection.


Subject(s)
Bacterial Infections , Paenibacillus larvae , Paenibacillus , Bees , Animals , United States , Paenibacillus larvae/physiology , Larva/microbiology , Ethanol/metabolism , Phenols/pharmacology , Phenols/metabolism , Paenibacillus/metabolism
15.
J Insect Sci ; 23(2)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36947033

ABSTRACT

American foulbrood (AFB) is a cosmopolitan bacterial disease that affects honey bee (Apis mellifera) larvae and causes great economic losses in apiculture. Currently, no satisfactory methods are available for AFB treatment mainly due to the difficulties to eradicate the tenacious spores produced by the etiological agent of AFB, Paenibacillus larvae (Bacillales, Paenibacillaceae). This present review focused on the beneficial bacteria that displayed antagonistic activities against P. larvae and demonstrated potential in AFB control. Emphases were placed on commensal bacteria (genus Bacillus and lactic acid bacteria in particular) in the alimentary tract of honey bees. The probiotic roles lactic acid bacteria play in combating the pathogenic P. larvae and the limitations referring to the application of these beneficial bacteria were addressed.


Subject(s)
Paenibacillus larvae , Bees , Animals , United States , Larva/microbiology , Beekeeping , Gastrointestinal Tract
16.
Vet Sci ; 10(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36977252

ABSTRACT

American foulbrood is caused by the spore-forming Paenibacillus larvae. Although the disease effects honey bee larvae, it threatens the entire colony. Clinical signs of the disease are seen at a very late stage of the disease and bee colonies are often beyond saving. Therefore, through active monitoring based on screening, an infection can be detected early and bee colonies can be protected with hygiene measures. As a result, the pressure to spread in an area remains low. The cultural and molecular biological detection of P. larvae is usually preceded by spore germination before detection. In this study, we compared the results of two methods, the culture detection and RT-PCR detection of DNA directly isolated from spores. Samples of honey and cells with honey surrounding the brood were used in a five-year voluntary monitoring program in a western part of Lower Austria. DNA-extraction from spores to speed up detection involved one chemical and two enzymatic steps before mechanical bashing-beat separation and additional lysis. The results are comparable to culture-based methods, but with a large time advantage. Within the voluntary monitoring program, the proportion of bee colonies without the detection of P. larvae was high (2018: 91.9%, 2019: 72.09%, 2020: 74.6%, 2021: 81.35%, 2022: 84.5%), and in most P. larvae-positive bee colonies, only a very low spore content was detected. Nevertheless, two bee colonies in one apiary with clinical signs of disease had to be eradicated.

17.
Vet Res Commun ; 47(3): 1445-1455, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36892790

ABSTRACT

Beekeeping is an important agricultural and commercial activity globally practiced. Honey bee is attacked by certain infectious pathogens. Most important brood diseases are bacterial including American Foulbrood (AFB), caused by Paenibacillus larvae (P. larvae), and European Foulbrood (EFB) by Melissococcus plutonius (M. plutonius) in addition of secondary invaders, e.g. Paenibacillus alvei (P. alvei) and Paenibacillus dendritiformis (P. dendritiformis). These bacteria cause the death of larvae in honey bee colonies. In this work, antibacterial activities of extracts, fractions, and isolated certain compounds (nominated 1-3) all originated from moss, Dicranum polysetum Sw. ( D. polysetum), were tested against some honey bee bacterial pathogens. Minimum inhibitory concentration, minimum bactericidal concentration, and sporicidal values ​​of methanol extract, ethyl acetate, and n-hexane fractions ranged between 10.4 and 18.98, 83.4-303.75 & 5.86-18.98 µg/mL against P. larvae, respectively. Antimicrobial activities of the ethyl acetate sub-fractions (fraction) and the isolated compounds (1-3) were tested against AFB- and EFB-causing bacteria. Bio-guided chromatographic separation of ethyl acetate fraction, a crude methanolic extract obtained from aerial parts of D. polysetum resulted in three natural compounds: a novel one, i.e. glycer-2-yl hexadeca-4-yne-7Z,10Z,13Z-trienoate (1, dicrapolysetoate; given as trivial name), in addition to two known triterpenoids poriferasterol (2), and γ-taraxasterol (3). Minimum inhibitory concentration ranges were 1.4-60.75, 8.12-65.0, 2.09-33.44 & 1.8-28.75 µg/mL for sub-fractions, compounds 1, 2, and 3, respectively.


Subject(s)
Anti-Bacterial Agents , Phytochemicals , Bees , Animals , Larva , Anti-Bacterial Agents/pharmacology , Plant Extracts
18.
Vet Sci ; 10(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36851407

ABSTRACT

American Foulbrood (AFB) of honey bees caused by the spore-forming bacterium Paenibacillus larvae is a notifiable epizootic in most countries. Authorities often consider a rigorous eradication policy the only sustainable control measure. However, early diagnosis of infected but not yet diseased colonies opens up the possibility of ridding these colonies of P. larvae spores by the shook swarm method, thus preventing colony destruction by AFB or official control orders. Therefore, surveillance of bee colonies for P. larvae infection followed by appropriate sanitary measures is a very important intervention to control AFB. For the detection of P. larvae spores in infected colonies, samples of brood comb honey, adult bees, or hive debris are commonly used. We here present our results from a comparative study on the suitability of these matrices in reliably and correctly detecting P. larvae spores contained in these matrices. Based on the sensitivity and limit of detection of P. larvae spores in samples from hive debris, adult bees, and brood comb honey, we conclude that the latter two are equally well-suited for AFB surveillance programs. Hive debris samples should only be used when it is not possible to collect honey or adult bee samples from brood combs.

19.
Vet Res Commun ; 47(3): 1379-1391, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36809600

ABSTRACT

INTRODUCTION: Paenibacillus larvae is a spore-forming bacillus, the most important bacterial pathogen of honeybee larvae and the causative agent of American foulbrood (AFB). Control measures are limited and represent a challenge for both beekeepers and researchers. For this reason, many studies focus on the search for alternative treatments based on natural products. AIM: The objective of this study was to determine the antimicrobial activity of the hexanic extract (HE) of Achyrocline satureioides on P. larvae and the inhibitory activity on some mechanisms related to pathogenicity. MATERIAL AND METHODS: The Minimum Inhibitory Concentration (MIC) of the HE was determined by the broth microdilution technique and the Minimum Bactericidal Concentration (MBC) by the microdrop technique. Swimming and swarming motility was evaluated in plates with 0.3 and 0.5% agar, respectively. Biofilm formation was evaluated and quantified by the Congo red and crystal violet method. The protease activity was evaluated by the qualitative technique on skim milk agar plates. RESULTS: It was determined that the MIC of the HE on four strains of P. larvae ranged between 0.3 and 9.37 µg/ml and the MBC between 1.17 and 150 µg/ml. On the other hand, sub-inhibitory concentrations of the HE were able to decrease swimming motility, biofilm formation and the proteases production of P. larvae.


Subject(s)
Achyrocline , Anti-Infective Agents , Paenibacillus larvae , Animals , Achyrocline/chemistry , Agar/pharmacology , Virulence , Larva , Anti-Infective Agents/pharmacology , Plant Extracts/pharmacology
20.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558073

ABSTRACT

Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.


Subject(s)
Lactobacillales , Probiotics , Bees , Animals , Humans , Caco-2 Cells , Biofilms , Probiotics/pharmacology , Pediococcus pentosaceus
SELECTION OF CITATIONS
SEARCH DETAIL