Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 916229, 2022.
Article in English | MEDLINE | ID: mdl-36046670

ABSTRACT

In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.

2.
Mol Neurobiol ; 56(10): 6902-6927, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30941733

ABSTRACT

Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.


Subject(s)
Brain/metabolism , Brain/pathology , Mesenchymal Stem Cells/metabolism , Neuroprotection , Proteome/metabolism , Animals , Humans , Mesenchymal Stem Cell Transplantation , Models, Biological
3.
Theriogenology ; 86(6): 1541-1549, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27341772

ABSTRACT

This study aimed to investigate the expression profiles of growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15) mRNA in canine oocytes and follicular cells throughout development at the different phases of the estrus cycle. Ovarian structures (follicles and CL) and plasma progesterone concentration were used to confirm the physiological status of each donor. Denuded oocytes and their follicular cells were recovered from follicles (n = 675) distributed into 4 types (preantral, small antral ∼0.2-0.39 mm, medium antral ∼0.4-5.9 mm, and large antral ∼6-8 mm). Total RNA was extracted and reverse transcribed, and the levels of expression for these 2 genes were determined using a quantitative real-time polymerase chain reaction technique; the data were evaluated by ANOVA. Relative expressions levels of GDF-9 and BMP-15 transcripts were detected in the oocyte and follicular cells in all follicular stages evaluated, showing differential changes (P < 0.05) during development over the estrus cycle. The expression patterns of both transcripts were highly correlated between follicles cells and oocytes (r > 0.8; P < 0.05 for GDF-9 and BMP-15), although GDF-9 was expressed at higher levels (P < 0.05) in the oocyte compared with the follicle cells. All cell types showed more GDF-9 mRNA abundance at early developing stages, mainly in the anestrus phase, and declining levels in the later stages (P < 0.05), whereas BMP-15 mRNA levels increased (P < 0.05) in follicular cells and oocytes from the preantral to the later stages, and remained constant during the final preovulatory stage. In conclusion, these two genes were detected in follicular cells and oocytes and were differentially expressed during the follicular development across the estrus cycle.


Subject(s)
Bone Morphogenetic Protein 15/genetics , Dogs , Gene Expression , Growth Differentiation Factor 9/genetics , Ovarian Follicle/metabolism , RNA, Messenger/analysis , Animals , Cumulus Cells/metabolism , Estrous Cycle/metabolism , Female , Granulosa Cells/metabolism , Oocytes/chemistry , Oocytes/metabolism , Ovarian Follicle/cytology , Real-Time Polymerase Chain Reaction , Theca Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL