Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 785
Filter
1.
Biochem Biophys Res Commun ; 736: 150504, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39121673

ABSTRACT

BACKGROUND & AIMS: Primary Hepatic Neuroendocrine Carcinoma (PHNEC) is a rare and aggressive tumor with high recurrence rates. Surgical resection remains the only therapeutic strategy. The effectiveness of tyrosine kinase inhibitors (TKIs) for PHNEC remains unclear due to limited research. METHODS: We employed immunohistochemical staining to diagnose PHNEC and assess the expression of eight tyrosine kinase receptors in tumor tissues, including VEGFRs, PDGFRA, EGFR, FGFRs et al. A patient-derived xenograft (PDX) model was established using PHNEC tumor tissues to test the efficacy of TKIs. PDX mice bearing tumors were treated with Avapritinib, an FDA-approved PDGFRA-targeting drug, at a daily oral dose of 10 mg/kg for 2 weeks. RESULTS: Pathological analysis confirmed the diagnosis of PHNEC with positive expression of Neural cell adhesion molecule (NCAM/CD56), Synaptophysin (Syn), and Somatostatin receptor 2 (SSTR-2), and negative expression of Hep (Hepatocyte Paraffin 1), a biomarker for Hepatocellular carcinoma. Notably, PDGFRA was significantly overexpressed in PHNEC tumor tissues compared to other tyrosine kinases. Avapritinib treatment significantly reduced tumor growth in PDX mice by 73.9 % (p = 0.008). Additionally, Avapritinib treatment led to a marked decrease in PDGFRA and Ki-67 expression, suggesting that it inhibits tumor cell proliferation by suppressing PDGFRA. CONCLUSION: Our findings suggest that PDGFRA is a potential therapeutic target for PHNEC, and its inhibition with Avapritinib may offer clinical benefits to patients with this rare malignancy.

2.
Cancer Immunol Immunother ; 73(10): 203, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105847

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR)-T cells have been used to treat blood cancers by producing a wide variety of cytokines. However, they are not effective in treating solid cancers and can cause severe side-effects, including cytokine release syndrome. TNFα is a tumoricidal cytokine, but it markedly increases the protein levels of cIAP1 and cIAP2, the members of inhibitor of apoptosis protein (IAP) family of E3 ubiquitin ligase that limits caspase-induced apoptosis. Degradation of IAP proteins by an IAP antagonist does not effectively kill cancer cells but enables TNFα to strongly induce cancer cell apoptosis. It would be a promising approach to treat cancers by targeted delivery of TNFα through an inactive adoptive cell in combination with an IAP antagonist. METHODS: Human dendritic cells (DCs) were engineered to express a single tumoricidal factor, TNFα, and a membrane-anchored Mucin1 antibody scFv, named Mucin 1 directed DCs expressing TNFα (M-DCsTNF). The efficacy of M-DCsTNF in recognizing and treating breast cancer was tested in vitro and in vivo. RESULTS: Mucin1 was highly expressed on the surface of a wide range of human breast cancer cell lines. M-DCsTNF directly associated with MDA-MB-231 cells in the bone of NSG mice. M-DCsTNF plus an IAP antagonist, SM-164, but neither alone, markedly induce MDA-MB-231 breast cancer cell apoptosis, which was blocked by TNF antibody. Importantly, M-DCsTNF combined with SM-164, but not SM-164 alone, inhibited the growth of patient-derived breast cancer in NSG mice. CONCLUSION: An adoptive cell targeting delivery of TNFα combined with an IAP antagonist is a novel effective approach to treat breast cancer and could be expanded to treat other solid cancers. Unlike CAR-T cell, this novel adoptive cell is not activated to produce a wide variety of cytokines, except for additional overexpressed TNF, and thus could avoid the severe side effects such as cytokine release syndrome.


Subject(s)
Dendritic Cells , Receptors, Chimeric Antigen , Tumor Necrosis Factor-alpha , Humans , Animals , Mice , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Receptors, Chimeric Antigen/immunology , Tumor Necrosis Factor-alpha/metabolism , Mucin-1/immunology , Mucin-1/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Immunotherapy, Adoptive/methods , Apoptosis , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Mice, SCID
3.
Front Med (Lausanne) ; 11: 1437226, 2024.
Article in English | MEDLINE | ID: mdl-39144662

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Surgery has been the major treatment method for HCC owing to HCC's poor sensitivity to radiotherapy and chemotherapy. However, its effectiveness is limited by postoperative tumour recurrence and metastasis. Systemic therapy is applied to eliminate postoperative residual tumour cells and improve the survival of patients with advanced HCC. Recently, the emergence of various novel targeted and immunotherapeutic drugs has significantly improved the prognosis of advanced HCC. However, targeted and immunological therapies may not always produce complete and long-lasting anti-tumour responses because of tumour heterogeneity and drug resistance. Traditional and patient-derived cell lines or animal models are used to investigate the drug resistance mechanisms of HCC and identify drugs that could reverse the resistance. This study comprehensively reviewed the established methods and applications of in-vivo and in-vitro HCC drug resistance models to further understand the resistance mechanisms in HCC treatment and provide a model basis for possible individualised therapy.

6.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39065755

ABSTRACT

Uveal melanoma (UM) represents a rare tumor of the uveal tract and is associated with a poor prognosis due to the high risk of metastasis. Despite advances in the treatment of UM, the mortality rate remains high, dictating an urgent need for novel therapeutic strategies. The current study introduces the first in vivo analysis of the therapeutic potential of calcium electroporation (CaEP) compared with electrochemotherapy (ECT) with bleomycin in a patient-derived xenograft (PDX) model based on the chorioallantoic membrane (CAM) assay. The experiments were conducted as monotherapy with either 5 or 10 mM calcium chloride or 1 or 2.5 µg/mL bleomycin in combination with EP or EP alone. CaEP and ECT induced a similar reduction in proliferative activity, neovascularization, and melanocytic expansion. A dose-dependent effect of CaEP triggered a significant induction of necrosis, whereas ECT application of 1 µg/mL bleomycin resulted in a significantly increased apoptotic response compared with untreated tumor grafts. Our results outline the prospective use of CaEP and ECT with bleomycin as an adjuvant treatment of UM, facilitating adequate local tumor control and potentially an improvement in metastatic and overall survival rates.

7.
J Exp Clin Cancer Res ; 43(1): 191, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987793

ABSTRACT

BACKGROUND: The potential involvement of circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification in the progression of Wilms tumor (WT) has not been fully elucidated. This study investigates the regulatory mechanisms and clinical significance of m6A-modified circMARK2 and its role in WT progression. METHODS: We identified dysregulated circRNAs through deep sequencing and validated their expression by qRT-PCR in WT tissues. The biological functions of circMARK2 were assessed using clone formation, transwell migration, and orthotopic animal models. To dissect the underlying mechanisms, we employed RNA immunoprecipitation, RNA pull-down, dual-luciferase reporter assays, Western blotting, and immunofluorescence and immunohistochemical staining. RESULTS: CircMARK2, upregulated in WT tissues, was found to be m6A-modified and promoted cytoplasmic export. It facilitated WT progression by stabilizing LIN28B mRNA through the circMARK2/IGF2BP2 interaction. In vitro and in vivo studies demonstrated that circMARK2 enhances the malignant behavior of WT cells. Clinically, higher circMARK2 levels in tumor tissues of WT patients were linked to increased tumor aggressiveness and reduced survival rates. CONCLUSIONS: Our study provides the first comprehensive evidence that m6A-modified circMARK2 contributes to WT progression by enhancing LIN28B mRNA stability, promoting cellular aggressiveness. CircMARK2 emerges as a potential biomarker for prognosis and a promising target for therapeutic intervention in WT, underscoring the clinical relevance of m6A modification in pediatric renal cancer.


Subject(s)
Adenosine , Disease Progression , RNA, Circular , RNA-Binding Proteins , Wilms Tumor , Animals , Female , Humans , Male , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Line, Tumor , Cytoplasm/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Prognosis , RNA, Circular/genetics , RNA, Circular/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Wilms Tumor/metabolism , Wilms Tumor/genetics , Wilms Tumor/pathology
8.
Cell Rep Med ; 5(7): 101631, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38986623

ABSTRACT

Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/ß-catenin signaling contribute to acquired DDRi drug resistance.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Xenograft Model Antitumor Assays , Wnt Signaling Pathway/genetics , Drug Resistance, Neoplasm/genetics , Genomics/methods , Biological Specimen Banks , Genetic Heterogeneity , DNA Damage/genetics , Interferons/metabolism , Interferons/genetics , Cell Lineage/genetics
9.
Hum Cell ; 37(5): 1522-1534, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39078546

ABSTRACT

Pancreatic neuroendocrine tumors are the second most common tumors of the pancreas, and approximately half of patients are diagnosed with liver metastases. Currently, the improvement in the efficacy of relevant treatment methods is still limited. Therefore, there is an urgent need for in-depth research on the molecular biological mechanism of pancreatic neuroendocrine tumors. However, due to their relatively inert biology, preclinical models are extremely scarce. Here, the patient-derived organoid, and patient-derived xenograft were successfully constructed. These two models and the previously constructed cell line named SPNE1 all derived from the same patient with a grade 3 non-functional pancreatic neuroendocrine tumor, providing new tumor modeling platforms, and characterized using immunohistochemistry, whole-exome sequencing, and single-cell transcriptome sequencing. Combined with a tumor formation experiment in immunodeficient mice, we selected the model that most closely recapitulated the parental tumor. Overall, the patient-derived xenograft model most closely resembled human tumor tissue.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy , Animals , Disease Models, Animal , Mice , Heterografts , Cell Line, Tumor , Organoids , Exome Sequencing
10.
Int Immunopharmacol ; 138: 112612, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38968862

ABSTRACT

Cholangiocarcinoma (CCA) is an aggressive and fatal cancer. The prognosis is very poor and no optimal chemotherapy has been established. Human epidermal growth factor receptor 2 (HER2, neu, and erbB2) is highly-expressed in breast cancer and is expressed in many other tumors but poorly expressed in CCA. The anti-HER2 antibody, trastuzumab, has been used for the treatment of HER2-positive breast and gastric cancer. In this study, we examined the surface expression of HER2 on seven Thai liver-fluke-associated CCA cell lines by flow cytometry, and found all of these CCA cells were weakly positive for HER2. MTT assay revealed that trastuzumab directly suppressed the growth of CCA. By using FcR-bearing recombinant Jurkat T-cell-expressing firefly luciferase gene under the control of NFAT response elements, we defined the activities of antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP). ADCC was confirmed by using expanded NK cells. ADCP was confirmed by using mouse peritoneal macrophages and human monocyte-derived macrophages as effector cells. Rabbit serum was administered to test the complement-dependent cytotoxicity (CDC) activity of trastuzumab. Finally, we evaluated the efficacy of trastuzumab in in vivo patient-derived cell xenograft and patient-derived xenograft (PDX) models. Our results showed that a distinct population of CCA (liver-fluke-associated CCA) expressed HER2. Trastuzumab demonstrated a potent inhibitory effect on even HER2 weakly positive CCA both in vitro and in vivo via multiple mechanisms. Thus, HER2 is a promising target in anti-CCA therapy, and trastuzumab can be considered a promising antibody immunotherapy agent for the treatment of CCA.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents, Immunological , Bile Duct Neoplasms , Cholangiocarcinoma , Trastuzumab , Animals , Female , Humans , Male , Mice , Rabbits , Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Agents, Immunological/pharmacology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/immunology , Cell Line, Tumor , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/immunology , Jurkat Cells , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Phagocytosis/drug effects , Receptor, ErbB-2/antagonists & inhibitors , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Xenograft Model Antitumor Assays
11.
Cells ; 13(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39056751

ABSTRACT

Uveal melanoma (UM) is the most common intraocular tumor in adults, and nearly 50% of patients develop metastatic disease with a high mortality rate. Therefore, the development of relevant preclinical in vivo models that accurately recapitulate the metastatic cascade is crucial. We exploited the chick embryo chorioallantoic membrane (CAM) xenograft model to quantify both experimental and spontaneous metastasis by qPCR analysis. Our study found that the transplanted UM cells spread predominantly and early in the liver, reflecting the primary site of metastasis in patients. Visible signs of pigmented metastasis were observed in the eyes, liver, and distal CAM. Lung metastases occurred rarely and brain metastases progressed more slowly. However, UM cell types of different origins and genetic profiles caused an individual spectrum of organ metastases. Metastasis to multiple organs, including the liver, was often associated with risk factors such as high proliferation rate, hyperpigmentation, and epithelioid cell type. The severity of liver metastasis was related to the hepatic metastatic origin and chromosome 8 abnormalities rather than monosomy 3 and BAP1 deficiency. The presented CAM xenograft model may prove useful to study the metastatic potential of patients or to test individualized therapeutic options for metastasis in different organs.


Subject(s)
Chorioallantoic Membrane , Melanoma , Uveal Neoplasms , Animals , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Chorioallantoic Membrane/pathology , Chorioallantoic Membrane/metabolism , Melanoma/pathology , Melanoma/genetics , Chick Embryo , Humans , Neoplasm Metastasis , Cell Line, Tumor , Disease Models, Animal , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Heterografts
12.
Lung Cancer ; 194: 107863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968761

ABSTRACT

Patient-derived xenografts (PDXs) are increasingly utilized in preclinical drug efficacy studies due to their ability to retain the molecular, histological, and drug response characteristics of patient tumors. This study aimed to investigate the factors influencing the successful engraftment of PDXs. Lung adenocarcinoma PDXs were established using freshly resected tumor tissues obtained through surgery. Radiological data of pulmonary nodules from this PDX cohort were analyzed, categorizing them into solid tumors and tumors with ground-glass opacity (GGO) based on preoperative CT images. Gene mutation status was obtained from next generation sequencing data and MassARRAY panel. A total of 254 resected primary lung adenocarcinomas were utilized for PDX establishment, with successful initial engraftment in 58 cases (22.8 %); stable engraftment defined as at least three serial passages was observed in 43 cases (16.9 %). The stable engraftment rates of PDXs from solid tumors and tumors with GGO were 22.1 % (42 of 190 cases) and 1.6 % (1 of 64 cases), respectively (P < 0.001). Adenocarcinomas with advanced stage, poor differentiation, solid histologic subtype, and KRAS or TP53 gene mutations were associated with stable PDX engraftment. Avoiding tumors with GGO features could enhance the cost-effectiveness of establishing PDX models from early-stage resected lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mutation , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/genetics , Male , Female , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Lung Neoplasms/genetics , Animals , Aged , Middle Aged , Mice , Heterografts , Neoplasm Staging , High-Throughput Nucleotide Sequencing , Adult , Xenograft Model Antitumor Assays , Aged, 80 and over , Proto-Oncogene Proteins p21(ras)/genetics
14.
Proc Natl Acad Sci U S A ; 121(25): e2310793121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861592

ABSTRACT

mTORC1 is aberrantly activated in renal cell carcinoma (RCC) and is targeted by rapalogs. As for other targeted therapies, rapalogs clinical utility is limited by the development of resistance. Resistance often results from target mutation, but mTOR mutations are rarely found in RCC. As in humans, prolonged rapalog treatment of RCC tumorgrafts (TGs) led to resistance. Unexpectedly, explants from resistant tumors became sensitive both in culture and in subsequent transplants in mice. Notably, resistance developed despite persistent mTORC1 inhibition in tumor cells. In contrast, mTORC1 became reactivated in the tumor microenvironment (TME). To test the role of the TME, we engineered immunocompromised recipient mice with a resistance mTOR mutation (S2035T). Interestingly, TGs became resistant to rapalogs in mTORS2035T mice. Resistance occurred despite mTORC1 inhibition in tumor cells and could be induced by coculturing tumor cells with mutant fibroblasts. Thus, enforced mTORC1 activation in the TME is sufficient to confer resistance to rapalogs. These studies highlight the importance of mTORC1 inhibition in nontumor cells for rapalog antitumor activity and provide an explanation for the lack of mTOR resistance mutations in RCC patients.


Subject(s)
Carcinoma, Renal Cell , Drug Resistance, Neoplasm , Kidney Neoplasms , Mechanistic Target of Rapamycin Complex 1 , TOR Serine-Threonine Kinases , Animals , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Mice , Humans , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment/drug effects , Cell Line, Tumor , Sirolimus/pharmacology , Mutation , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use
15.
Oncol Lett ; 28(2): 360, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38881709

ABSTRACT

Small bowel adenocarcinoma (SBA) is a rare tumor with a poor prognosis. Due to its rarity, the research infrastructure for SBA, including cell lines, is inadequate. The present study established a novel SBA cell line, SiCry-15X, using patient-derived xenografts of SBA. The following criteria were defined for establishment: Long-term culturability, tumorigenicity and similarity with the original tumor. The biological characteristics of the cell line, its sensitivity to anticancer drugs and its ability to produce tumor markers carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) were evaluated. SiCry-15X cells adhered and grew as a monolayer, with a population doubling time of 37 h. Polymerase chain reaction results confirmed the human origin of the cell line, and short tandem repeat analysis revealed that the cells were genetically identical to the original tumor. The 50% inhibitory concentrations of 5-fluorouracil, paclitaxel, irinotecan, oxaliplatin and cisplatin for SiCry-15X were 104.05, 0.24, 63.3, 146.55 and 49.29 µM, respectively. CEA and CA19-9 concentrations in the culture media were markedly elevated. In addition, CEA and CA19-9 levels in the serum of cell-derived xenograft model mice were elevated. Moreover, CEA and CA19-9 were produced by SiCry-15X cells and distributed throughout the blood. Furthermore, increases in serum CEA and CA19-9 of cell-derived xenograft model mice were consistent with the clinical course of the disease. The newly established SBA cell line, SiCry-15X, could be an effective tool for conducting further studies on SBA.

16.
J Clin Med ; 13(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731247

ABSTRACT

Background: The application of personalized cancer treatment based on genetic information and surgical samples has begun in the field of cancer medicine. However, a biopsy may be painful for patients with advanced diseases that do not qualify for surgical resection. Patient-derived xenografts (PDXs) are cancer models in which patient samples are transplanted into immunodeficient mice. PDXs are expected to be useful for personalized medicine. The aim of this study was to establish a PDX from body fluid (PDX-BF), such as peritoneal and pleural effusion samples, to provide personalized medicine without surgery. Methods: PDXs-BF were created from patients with ovarian cancer who had positive cytology findings based on peritoneal and pleural effusion samples. PDXs were also prepared from each primary tumor. The pathological findings based on immunohistochemistry were compared between the primary tumor, PDX, and PDX-BF. Further, genomic profiles and gene expression were evaluated using DNA and RNA sequencing to compare primary tumors, PDXs, and PDX-BF. Results: Among the 15 patients, PDX-BF was established for 8 patients (5 high-grade serous carcinoma, 1 carcinosarcoma, 1 low-grade serous carcinoma, and 1 clear cell carcinoma); the success rate was 53%. Histologically, PDXs-BF have features similar to those of primary tumors and PDXs. In particular, PDXs-BF had similar gene mutations and expression patterns to primary tumors and PDXs. Conclusions: PDX-BF reproduced primary tumors in terms of pathological features and genomic profiles, including gene mutation and expression. Thus, PDX-BF may be a potential alternative to surgical resection for patients with advanced disease.

17.
Mol Cancer ; 23(1): 83, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38730475

ABSTRACT

BACKGROUND: Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering. METHODS: NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice. RESULTS: We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer. CONCLUSIONS: These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.


Subject(s)
Nanoparticles , T-Lymphocytes , Humans , Animals , Mice , Nanoparticles/chemistry , Female , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Immune Evasion , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
18.
Eur Urol Oncol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38755094

ABSTRACT

Current standard-of-care systemic therapy options for locally advanced and metastatic bladder cancer (BC), which are predominantly based on cisplatin-gemcitabine combinations, are limited by significant treatment failure rates and frailty-based patient ineligibility. We previously addressed the urgent clinical need for better-tolerated BC therapeutic strategies using a drug screening approach, which identified outstanding antineoplastic activity of clofarabine in preclinical models of BC. To further assess clofarabine as a potential BC therapy component, we conducted head-to-head comparisons of responses to clofarabine versus gemcitabine in preclinical in vitro and in vivo models of BC, complemented by in silico analyses. In vitro data suggest a distinct correlation between the two antimetabolites, with higher cytotoxicity of gemcitabine, especially against several nonmalignant cell types, including keratinocytes and endothelial cells. Accordingly, tolerance of clofarabine (oral or intraperitoneal application) was distinctly better than for gemcitabine (intraperitoneal) in patient-derived xenograft models of BC. Clofarabine also exhibited distinctly superior anticancer efficacy, even at dosing regimens optimized for gemcitabine. Neither complete remission nor cure, both of which were observed with clofarabine, were achieved with any tolerable gemcitabine regimen. Taken together, our findings demonstrate that clofarabine has a better therapeutic window than gemcitabine, further emphasizing its potential as a candidate for drug repurposing in BC. PATIENT SUMMARY: We compared the anticancer activity of clofarabine, a drug used for treatment of leukemia but not bladder cancer, and gemcitabine, a drug currently used for chemotherapy against bladder cancer. Using cell cultures and mouse models, we found that clofarabine was better tolerated and more efficacious than gemcitabine, and even cured implanted tumors in mouse models. Our results suggest that clofarabine, alone or in combination schemes, might be superior to gemcitabine for the treatment of bladder cancer.

19.
Exp Hematol Oncol ; 13(1): 52, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760861

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4+ effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment. METHODS: The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model. RESULTS: We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8+ T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8+ T cells in mice with tumor lung metastasis and induces peripheral CD8+ T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1ß and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1ß signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models. CONCLUSIONS: Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.

20.
Cell Rep Med ; 5(6): 101572, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38754420

ABSTRACT

Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the peripheral blood. Nearly half of the AML patients relapse after standard induction therapy, and new forms of therapy are urgently needed. Chimeric antigen receptor (CAR) T therapy has so far not been successful in AML due to lack of efficacy and safety. Indeed, the most attractive antigen targets are stem cell markers such as CD33 or CD123. We demonstrate that CD37, a mature B cell marker, is expressed in AML samples, and its presence correlates with the European LeukemiaNet (ELN) 2017 risk stratification. We repurpose the anti-lymphoma CD37CAR for the treatment of AML and show that CD37CAR T cells specifically kill AML cells, secrete proinflammatory cytokines, and control cancer progression in vivo. Importantly, CD37CAR T cells display no toxicity toward hematopoietic stem cells. Thus, CD37 is a promising and safe CAR T cell AML target.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Animals , Immunotherapy, Adoptive/methods , Mice , Tetraspanins/immunology , Cell Line, Tumor , T-Lymphocytes/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/immunology , Female , Male , Antigens, Neoplasm
SELECTION OF CITATIONS
SEARCH DETAIL