Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 723674, 2021.
Article in English | MEDLINE | ID: mdl-34497629

ABSTRACT

Proteins play a major role in the three-dimensional organization of nuclear genome and its function. While histones arrange DNA into a nucleosome fiber, other proteins contribute to higher-order chromatin structures in interphase nuclei, and mitotic/meiotic chromosomes. Despite the key role of proteins in maintaining genome integrity and transferring hereditary information to daughter cells and progenies, the knowledge about their function remains fragmentary. This is particularly true for the proteins of condensed chromosomes and, in particular, chromosomes of plants. Here, we purified barley mitotic metaphase chromosomes by a flow cytometric sorting and characterized their proteins. Peptides from tryptic protein digests were fractionated either on a cation exchanger or reversed-phase microgradient system before liquid chromatography coupled to tandem mass spectrometry. Chromosomal proteins comprising almost 900 identifications were classified based on a combination of software prediction, available database localization information, sequence homology, and domain representation. A biological context evaluation indicated the presence of several groups of abundant proteins including histones, topoisomerase 2, POLYMERASE 2, condensin subunits, and many proteins with chromatin-related functions. Proteins involved in processes related to DNA replication, transcription, and repair as well as nucleolar proteins were found. We have experimentally validated the presence of FIBRILLARIN 1, one of the nucleolar proteins, on metaphase chromosomes, suggesting that plant chromosomes are coated with proteins during mitosis, similar to those of human and animals. These results improve significantly the knowledge of plant chromosomal proteins and provide a basis for their functional characterization and comparative phylogenetic analyses.

2.
Mol Syst Biol ; 16(8): e9469, 2020 08.
Article in English | MEDLINE | ID: mdl-32744794

ABSTRACT

The nucleolus is essential for ribosome biogenesis and is involved in many other cellular functions. We performed a systematic spatiotemporal dissection of the human nucleolar proteome using confocal microscopy. In total, 1,318 nucleolar proteins were identified; 287 were localized to fibrillar components, and 157 were enriched along the nucleoplasmic border, indicating a potential fourth nucleolar subcompartment: the nucleoli rim. We found 65 nucleolar proteins (36 uncharacterized) to relocate to the chromosomal periphery during mitosis. Interestingly, we observed temporal partitioning into two recruitment phenotypes: early (prometaphase) and late (after metaphase), suggesting phase-specific functions. We further show that the expression of MKI67 is critical for this temporal partitioning. We provide the first proteome-wide analysis of intrinsic protein disorder for the human nucleolus and show that nucleolar proteins in general, and mitotic chromosome proteins in particular, have significantly higher intrinsic disorder level compared to cytosolic proteins. In summary, this study provides a comprehensive and essential resource of spatiotemporal expression data for the nucleolar proteome as part of the Human Protein Atlas.


Subject(s)
Cell Nucleolus/metabolism , Ki-67 Antigen/metabolism , Nuclear Proteins/metabolism , Proteomics/methods , Chromosomes, Human/metabolism , HEK293 Cells , Humans , Microscopy, Confocal , Mitosis , Phenotype , Single-Cell Analysis
3.
Chromosoma ; 127(2): 175-186, 2018 06.
Article in English | MEDLINE | ID: mdl-29322240

ABSTRACT

Ki-67 protein has been widely used as a proliferation marker for human tumor cells for decades. In recent studies, multiple molecular functions of this large protein have become better understood. Ki-67 has roles in both interphase and mitotic cells, and its cellular distribution dramatically changes during cell cycle progression. These localizations correlate with distinct functions. For example, during interphase, Ki-67 is required for normal cellular distribution of heterochromatin antigens and for the nucleolar association of heterochromatin. During mitosis, Ki-67 is essential for formation of the perichromosomal layer (PCL), a ribonucleoprotein sheath coating the condensed chromosomes. In this structure, Ki-67 acts to prevent aggregation of mitotic chromosomes. Here, we present an overview of functional roles of Ki-67 across the cell cycle and also describe recent experiments that clarify its role in regulating cell cycle progression in human cells.


Subject(s)
Cell Nucleolus/metabolism , Heterochromatin/metabolism , Ki-67 Antigen/genetics , Mitosis , Ribonucleoproteins/genetics , Amino Acid Sequence , Cell Line, Tumor , Cell Nucleolus/ultrastructure , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation , Heterochromatin/ultrastructure , Humans , Interphase , Ki-67 Antigen/metabolism , Protein Domains , Protein Isoforms/genetics , Protein Isoforms/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
4.
Biochem Biophys Res Commun ; 493(2): 1043-1049, 2017 11 18.
Article in English | MEDLINE | ID: mdl-28935370

ABSTRACT

The perichromosomal layer (PCL) is a structure that surrounds mitotic chromosomes, found in both animal and plant cells. It comprises various proteins and RNAs, mainly derived from the nucleolus. Several functions for the PCL have been suggested; however, the mechanism of PCL organization during mitosis remains unclear. The localization of several nucleolar proteins to the PCL is reportedly dependent on pre-ribosomal RNAs and the marker of proliferation, Ki67, which is a major PCL-localized protein. Here we demonstrate that, although the removal of pre-ribosomal RNAs from the PCL causes PCL delocalization of several nucleolar proteins, it does not affect the localization of Ki67. Conversely, Ki67 depletion results in the dissociation of both pre-ribosomal RNAs and nucleolar proteins from the PCL, which indicates that Ki67 is required for the PCL accumulation of pre-ribosomal RNAs, to which several nucleolar proteins are associated. Given these findings, we propose a model for PCL organization that comprises three essential layers: the scaffolding protein Ki67, pre-ribosomal RNAs for linkage, and outer nucleolar proteins.


Subject(s)
Cell Nucleolus/chemistry , Ki-67 Antigen/analysis , Nuclear Proteins/analysis , RNA Precursors/analysis , RNA, Ribosomal/analysis , Cell Nucleolus/metabolism , Cell Nucleolus/ultrastructure , Chromosomes/chemistry , Chromosomes/metabolism , HeLa Cells , Humans , Ki-67 Antigen/metabolism , Mitosis , Nuclear Proteins/metabolism , RNA Precursors/metabolism , RNA, Ribosomal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL