Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Osteoarthr Cartil Open ; 6(3): 100496, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39021876

ABSTRACT

Objectives: Numerous studies have established the role of inflammation in osteoarthritis (OA) progression, yet limited research explores the association between systemic inflammatory indicators and pre-diagnosis OA risk. This study aimed to investigate the association between peripheral inflammatory indicators and the risk of OA using data from the UK Biobank. Methods: The study analyzed data from 417,507 participants in the UK Biobank, including neutrophil count, lymphocyte count, monocyte count, platelet count, and C-reactive protein meter. Additionally, derived ratios such as NLR(neutrophils-lymphocytes ratio), PLR(Platelets-lymphocytes ratio), SII(systemic immune-inflammation index), and LMR (lymphocytes-monocytes ratio) were examined. Cox proportional hazards models and restricted cubic spline models were used to assess both linear and nonlinear associations. Results: Over a mean follow-up period of 12.7 years, a total of 49,509 OA events were identified. The findings revealed that CRP (HR:1.06, 95%CI:1.05-1.07), NLR (HR:1.02, 95%CI:1.01-1.03), PLR (HR:1.02, 95%CI:1.01-1.03), and SII (HR:1.03, 95%CI:1.01-1.04) were associated with an increased risk of OA, while LMR (HR:0.97, 95%CI:0.96-0.99) showed a significant negative correlation with OA risk. Subgroup analyses further emphasized that these associations were significant across most of the population. Although neutrophils, lymphocytes, monocytes, and platelets showed a nominal association with the risk of OA, the results were unreliable, especially for specific joint OA. Conclusion: The study provides evidence of a significant association between elevated peripheral inflammatory indicators and OA risk. These findings underscore the importance of low-grade chronic inflammation in OA development. The potential clinical utility of these indicators as early predictors of OA is suggested, warranting further exploration.

2.
Front Cell Neurosci ; 18: 1365448, 2024.
Article in English | MEDLINE | ID: mdl-39022312

ABSTRACT

General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.

3.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892241

ABSTRACT

Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal root ganglion (DRG) neuronal cell bodies during chronic peripheral inflammation, but the mechanism for this GLS elevation is yet to be fully characterized. It has been well established that, after nerve growth factor (NGF) binds to its high-affinity receptor tropomyosin receptor kinase A (TrkA), a retrograde signaling endosome is formed. This endosome contains the late endosomal marker Rab7GTPase and is retrogradely transported via axons to the cell soma located in the DRG. This complex is responsible for regulating the transcription of several critical nociceptive genes. Here, we show that this retrograde NGF signaling mediates the expression of GLS in DRG neurons during the process of peripheral inflammation. We disrupted the normal NGF/TrkA signaling in adjuvant-induced arthritic (AIA) Sprague Dawley rats by the pharmacological inhibition of TrkA or blockade of Rab7GTPase, which significantly attenuated the expression of GLS in DRG cell bodies. The results indicate that NGF/TrkA signaling is crucial for the production of glutamate and has a vital role in the development of neurogenic inflammation. In addition, our pain behavioral data suggest that Rab7GTPase can be a potential target for attenuating peripheral inflammatory pain.


Subject(s)
Ganglia, Spinal , Glutaminase , Inflammation , Nerve Growth Factor , Rats, Sprague-Dawley , Receptor, trkA , Signal Transduction , Animals , Ganglia, Spinal/metabolism , Nerve Growth Factor/metabolism , Glutaminase/metabolism , Rats , Receptor, trkA/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Neurons/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
4.
Brain Behav Immun ; 120: 532-542, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925415

ABSTRACT

Individuals with substance use problems show lower executive control and alterations in prefrontal brain systems supporting emotion regulation and impulse control. A separate literature suggests that heightened inflammation also increases risk for substance use, in part, through targeting brain systems involved in executive control. Research on neural and inflammatory signaling in substance use, however, has occurred in parallel. Drawing on recent neuroimmune network models, we used fMRI to examine the relationships between executive control-related brain activity (as elicited by an n-back working memory task), peripheral inflammation, as quantified by inflammatory cytokines and C-reactive protein (CRP), and substance use for the past month in 93 participants [mean age = 24.4 (SD = 0.6)]. We operationalized low executive control as a neural inefficiency during the n-back task to achieve normative performance, as reflected in higher working memory-related brain activity and lower activity in the default mode network (DMN). Consistent with prediction, individuals with low executive control and high inflammation reported more substance use over the past month, controlling for behavioral performance on the n-back, sex, time between assessments, body-mass-index (BMI), and personal socioeconomic status (SES) (interaction between inflammation and working memory-related brain activity, b = 0.210, p = 0.005; interaction between inflammation and DMN, b = -0.219, p < 0.001). Findings suggest that low executive control and high inflammation may be associated with higher substance use. This has implications for understanding psychological, neural, and immunological risk for substance use problems and the development of interventions to target each of these components.

5.
J Neurochem ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822659

ABSTRACT

The relationship between peripheral inflammatory markers, their dynamic changes, and the disease severity of myasthenia gravis (MG) is still not fully understood. Besides, the possibility of using it to predict the short-term poor outcome of MG patients have not been demonstrated. This study aims to investigate the relationship between peripheral inflammatory markers and their dynamic changes with Myasthenia Gravis Foundation of America (MGFA) classification (primary outcome) and predict the short-term poor outcome (secondary outcome) in MG patients. The study retrospectively enrolled 154 MG patients from June 2016 to December 2021. The logistic regression was used to investigate the relationship of inflammatory markers with MGFA classification and determine the factors for model construction presented in a nomogram. Finally, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were utilized to evaluate the incremental capacity. Logistic regression revealed significant associations between neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), aggregate index of systemic inflammation (AISI) and MGFA classification (p = 0.013, p = 0.032, p = 0.017, respectively). Incorporating dynamic changes of inflammatory markers into multivariable models improved their discriminatory capacity of disease severity, with significant improvements observed for NLR, systemic immune-inflammation index (SII) and AISI in NRI and IDI. Additionally, AISI was statistically associated with short-term poor outcome and a prediction model incorporating dynamic changes of inflammatory markers was constructed with the area under curve (AUC) of 0.953, presented in a nomograph. The inflammatory markers demonstrate significant associations with disease severity and AISI could be regarded as a possible and easily available predictive biomarker for short-term poor outcome in MG patients.

6.
Front Pain Res (Lausanne) ; 5: 1372942, 2024.
Article in English | MEDLINE | ID: mdl-38721062

ABSTRACT

This study investigates the impact of combining psychophysical stress, induced by forced swim (FSS), with masseter inflammation on reactive oxygen species (ROS) production in trigeminal ganglia (TG), TRPA1 upregulation in TG, and mechanical hyperalgesia. In a rat model, we demonstrate that FSS potentiates and prolongs CFA-induced ROS upregulation within TG. The ROS levels in CFA combined with FSS group surpass those in the CFA-only group on days 4 and 28 post-treatment. FSS also enhances TRPA1 upregulation in TG, with prolonged expression compared to CFA alone. Furthermore, CFA-induced mechanical hyperalgesia is significantly prolonged by FSS, persisting up to day 28. PCR array analyses reveal distinct alterations in oxidative stress genes under CFA and CFA combined with FSS conditions, suggesting an intricate regulation of ROS within TG. Notably, genes like Nox4, Hba1, Gpx3, and Duox1 exhibit significant changes, providing potential targets for managing oxidative stress and inflammatory pain. Western blot and immunohistochemistry confirm DUOX1 protein upregulation and localization in TG neurons, indicating a role in ROS generation under inflammatory and stress conditions. This study underscores the complex interplay between psychophysical stress, inflammation, and oxidative stress in the trigeminal system, offering insights into novel therapeutic targets for pain management.

7.
Front Aging Neurosci ; 16: 1377994, 2024.
Article in English | MEDLINE | ID: mdl-38650864

ABSTRACT

Introduction: Peripheral inflammatory responses are suggested to play a major role in the pathophysiology of Parkinson's disease (PD). The neutrophil-to-lymphocyte ratio (NLR), a new recognized biomarker, can reflect peripheral inflammation in PD. However, the association between the NLR and dopaminergic degeneration in PD remains unclear. Methods: In this retrospective study, 101 enrolled PD patients were categorized into early-stage and advanced-stage PD based on the Hoehn and Yahr (HY) scale. We evaluated the clinical characteristics, peripheral immune profile, and 11C-CFT striatal dopamine transporter (DAT) binding levels. Linear regression analyses were employed to assess the associations between NLR and striatal DAT levels at different stages in PD patients. Results: Covariate-controlled regression analysis revealed that higher NLR was significantly associated with lower DAT levels in the caudate (ß = -0.27, p = 0.003) and the putamen (ß = -0.27, p = 0.011). Moreover, in the early-stage PD subgroup, a similar association was observed (caudate: ß = -0.37, p = 0.013; putamen: ß = -0.45, p = 0.005). The lymphocytes count was correlated positively with the striatal DAT levels in the Spearman correlation analysis whether in total patients (caudate: ρ = 0.25, p = 0.013; putamen: ρ = 0.22, p = 0.026) or in the early-stage subgroup (caudate: ρ = 0.31, p = 0.023, putamen: ρ = 0.34, p = 0.011). Conclusion: Dopaminergic degeneration is associated with peripheral inflammation in PD. The NLR, a widely used inflammatory marker, may have the potential to reflect the degree of dopaminergic degeneration in individuals with early-stage PD.

8.
Parkinsonism Relat Disord ; 123: 106102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507892

ABSTRACT

BACKGROUND: Peripheral inflammation plays a significant role in Parkinson's disease (PD). Conflicting studies on whether inflammatory indicators in blood could serve as biomarkers to distinguish PD. OBJECTIVE: Include a wider range of biomarkers and control confounding factors to comprehensively evaluate the value of peripheral inflammation-related indicators. METHODS: A total of 80 PD patients were recruited and 80 one-to-one matched healthy controls (HCs). The levels of B-cell, T-cell, and natural killer (NK)-cell in blood were measured using flow cytometry. The levels of neurodegeneration-related proteins in serum were detected and clinical blood test results were collected. Multivariable logistic regression analysis was conducted to explore the role of significant variables in PD. Receiver operating characteristic curve analysis was performed to assess the potential value of these variables. RESULTS: Compared to HCs, PD patients showed lower levels of lymphocyte, B-cell, T-cell, high-density lipoprotein cholesterol (HDL-C) and lymphocyte-to-monocyte ratio, while the levels of neutrophil, NK-cell, ß-amyloid40, neurofilament light chain, neutrophil-to-lymphocyte ratio, and neutrophil-to-HDL-C ratio (NHR) were increased. A higher B-cell count was associated with a lower risk of PD, while higher levels of NK-cell and NHR were associated with a higher risk of PD. B-cell, NK-cell and NHR have potential value in distinguishing PD from non-PD. B-cell and NHR levels were significantly correlated with PD dyskinesia scores. CONCLUSIONS: B-cell, NK-cell, and NHR may potentially contribute to distinguishing PD patients from HCs. There could be a correlation between the number of B-cell, the level of NHR, and the severity of PD dyskinesia.


Subject(s)
Biomarkers , Killer Cells, Natural , Parkinson Disease , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Male , Female , Middle Aged , Biomarkers/blood , Aged , Inflammation/blood , Inflammation/diagnosis , B-Lymphocytes , T-Lymphocytes , Neutrophils
9.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474288

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aß) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Osteoarthritis , Humans , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Cross-Sectional Studies , Multimorbidity , Inflammation
10.
Int J Bipolar Disord ; 12(1): 5, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388844

ABSTRACT

BACKGROUND: Systemic inflammation-immune dysregulation and brain abnormalities are believed to contribute to the pathogenesis of bipolar disorder (BD). However, the connections between peripheral inflammation and the brain, especially the interactions between different BD subtypes and episodes, remain to be elucidated. Therefore, we conducted the present study to provide a comprehensive understanding of the complex association between peripheral inflammation and neuroimaging findings in patients with bipolar spectrum disorders. METHODS: This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42023447044) and conducted according to the Population, Intervention, Comparison, Outcomes, and Study Design (PICOS) framework. Online literature databases (PubMed, Web of Science, Scopus, EMBASE, MEDLINE, PsycINFO, and the Cochrane Library) were searched for studies that simultaneously investigated both peripheral inflammation-related factors and magnetic resonance neurography of BD patients up to July 01, 2023. Then, we analysed the correlations between peripheral inflammation and neuroimaging, as well as the variation trends and the shared and specific patterns of these correlations according to different clinical dimensions. RESULTS: In total, 34 publications ultimately met the inclusion criteria for this systematic review, with 2993 subjects included. Among all patterns of interaction between peripheral inflammation and neuroimaging, the most common pattern was a positive relationship between elevated inflammation levels and decreased neuroimaging measurements. The brain regions most susceptible to inflammatory activation were the anterior cingulate cortex, amygdala, prefrontal cortex, striatum, hippocampus, orbitofrontal cortex, parahippocampal gyrus, postcentral gyrus, and posterior cingulate cortex. LIMITATIONS: The small sample size, insufficiently explicit categorization of BD subtypes and episodes, and heterogeneity of the research methods limited further implementation of quantitative data synthesis. CONCLUSIONS: Disturbed interactions between peripheral inflammation and the brain play a critical role in BD, and these interactions exhibit certain commonalities and differences across various clinical dimensions of BD. Our study further confirmed that the fronto-limbic-striatal system may be the central neural substrate in BD patients.

11.
Children (Basel) ; 11(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38397350

ABSTRACT

Diabetes can trigger an increase in cytokine levels leading to the production of C-reactive protein and fibrinogen. These molecules promote subclinical inflammation, causing the expression of adhesive molecules and endothelial dysfunction. Despite the lack of a comprehensive panel for single-nucleotide polymorphisms (SNPs) for interleukins associated with type 1 diabetes mellitus (T1DM), understanding the inflammatory role of SNPs is crucial because periodontitis, the sixth complication of diabetes, is influenced via these genetic variations. This review focuses on the interleukin levels in T1DM patients with and without periodontitis, with a particular focus on childhood and on SNPs when reported. A search of PubMed and Scopus identified 21 relevant studies from the past five years. Several ILs were analyzed, emphasizing that T1DM still needs to be thoroughly explored regarding an IL polymorphisms panel; however, the last five years have led to the increased independence of this condition, causing autonomous inflammatory effects, which require further investigation. The periodontitis and T1DM association in children and adolescents represents a severe gap in the literature that should be filled; this scarce presence of studies serves as motivation for further clinical research.

12.
Int Immunopharmacol ; 130: 111700, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38382262

ABSTRACT

Poststroke inflammation is essential in the mechanism of secondary injury, and it is orchestrated by resident microglia, astrocytes, and circulating immune cells. Edaravone dexborneol (EDB) is a combination of edaravone and borneol that has been identified as a clinical protectant for stroke management. In this study, we verified the anti-inflammatory effect of EDB in the mouse model of ischemia and investigated its modulatory action on inflammation-related cells. C57BL/6 male mice, which had the transient middle cerebral artery occlusion (tMCAO), were treated (i.p.) with EDB (15 mg/kg). EDB administration significantly reduced the brain infarction and improved the sensorimotor function after stroke. And EDB alleviated the neuroinflammation by restraining the polarization of microglia/macrophages and astrocyte toward proinflammatory phenotype and inhibiting the production of proinflammatory cytokines (such as IL-1ß, TNF-α, and IL-6) and chemokines (including MCP-1 and CXCL1). Furthermore, EDB ameliorated the MCAO-induced impairment of Blood-brain barrier (BBB) by suppressing the degradation of tight junction protein and attenuated the accumulation of peripheral leukocytes in the ischemic brain. Additionally, systemic EDB administration inhibited the macrophage phenotypic shift toward the M1 phenotype and the macrophage-dependent inflammatory response in the spleen and blood. Collectively, EDB protects against ischemic stroke injury by inhibiting the proinflammatory activation of microglia/macrophages and astrocytes and through reduction by invasion of circulating immune cells, which reduces central and peripheral inflammation following stroke.


Subject(s)
Brain Ischemia , Stroke , Animals , Mice , Male , Microglia , Edaravone/therapeutic use , Astrocytes/metabolism , Brain Ischemia/metabolism , Neuroinflammatory Diseases , Mice, Inbred C57BL , Stroke/metabolism , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Leukocytes/metabolism
13.
Article in English | MEDLINE | ID: mdl-37777477

ABSTRACT

BACKGROUND: The relationships of neutrophils and cytokines with cognitive dysfunction are poorly defined. We aimed to investigate the association of peripheral blood absolute neutrophil count (ANC) with cognitive function in older adults and to further explore the mediating role of serum cytokines in this association. METHODS: This population-based cohort study included 1 666 dementia-free participants (age ≥60 years) derived from baseline examinations (March-September 2018) of the Multimodal Intervention to Delay Dementia and Disability in Rural China (MIND-China); of these, 1 087 participants completed follow-up examinations in October-December 2019. We used a neuropsychological test battery to assess episodic memory, verbal fluency, attention, and executive function at the baseline and follow-up examinations. We used Mindray BC-6800 automated hematology analyzer to measure ANC and Meso Scale Discovery to measure serum interleukin-6 (IL-6) and eotaxin-3. RESULTS: The linear regression analysis of cross-sectional data at baseline (n = 1 666) suggested that increased ANC was significantly associated with a lower episodic memory z score (ß coefficient: -0.149, 95% CI: -0.274 to -0.023) and lower long-delayed free recall z score (-0.216, -0.361 to -0.070). Serum IL-6 and eotaxin-3 could mediate 16.16% to 20.21% and 7.55% to 9.35%, respectively, of these associations. The analysis of longitudinal data (n = 1 087) showed a J-shaped relationship of ANC with decline in episodic memory z score (p for nonlinear = .049), and a U-shaped relationship between ANC and decline in long-delayed free recall z score (p for nonlinear = .043). CONCLUSIONS: Increased neutrophils are associated with poor cognitive performance and accelerated decline in episodic memory, and the cross-sectional association is partly mediated by serum cytokines.


Subject(s)
Cognitive Dysfunction , Neutrophils , Humans , Aged , Chemokine CCL26 , Cohort Studies , Cytokines , Interleukin-6 , Cross-Sectional Studies , Cognition , Cognitive Dysfunction/diagnosis
14.
Rev Neurosci ; 35(1): 99-120, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37602685

ABSTRACT

Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.


Subject(s)
Alzheimer Disease , Epstein-Barr Virus Infections , Humans , Alzheimer Disease/pathology , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Inflammation/complications , Anti-Inflammatory Agents
15.
Mov Disord ; 39(2): 391-399, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38155513

ABSTRACT

BACKGROUND: Neuroinflammation might contribute to the pathogenesis of multiple systemic atrophy (MSA). However, specific alterations in the peripheral inflammatory and immune profiles of patients with MSA remain unclear. OBJECTIVES: To determine the peripheral inflammatory and immune profiles of patients with MSA and their potential value as biomarkers for facilitating clinical diagnosis and monitoring disease severity. METHODS: This cross-sectional study included 235, 240, and 235 patients with MSA, patients with Parkinson's disease (PD), and healthy controls (HCs), respectively. Inflammatory and immune parameters were measured in peripheral blood, differences between groups were assessed, and clusters were analyzed. Associations between the parameters and clinical characteristics of MSA were assessed using Spearman and partial correlation analyses. RESULTS: Significant differences were observed especially in monocytes, neutrophils-to-lymphocyte ratio (NLR) and neutrophils-to-lymphocyte ratio (MPV) between MSA patients and HCs (P < 0.01). Monocytes and uric acid (UA) levels were also significantly different between the MSA and PD patients (P < 0.05). The combination of NLR and MPV distinguished MSA-P patients from HCs (areas under the curve = 0.824). In addition, complement components C4 and C3 were significantly correlated with the Scale Outcomes in PD for Autonomic Symptoms and Wexner scale, whereas immunoglobulin G (IgG) was significantly correlated with scores of Unified Multiple System Atrophy Rating Scale (P < 0.05). CONCLUSIONS: In MSA patients, monocytes, NLR and MPV might serve as potential diagnostic biomarkers, whereas MLR, C3, C4, and IgG significantly correlate with disease severity. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/diagnosis , Cross-Sectional Studies , Biomarkers , Immunoglobulin G
16.
Front Immunol ; 14: 1283711, 2023.
Article in English | MEDLINE | ID: mdl-38077359

ABSTRACT

Microglia, the resident macrophages of the central nervous system (CNS), play a critical role in CNS homeostasis and neuroinflammation. Pexidartinib (PLX3397), a colony-stimulating factor 1 (CSF1) receptor inhibitor, is widely used to deplete microglia, offering flexible options for both long-term depletion and highly versatile depletion-repopulation cycles. However, the potential impact of PLX3397 on peripheral (immune) cells remains controversial. Until now, the microglia-specificity of this type of compounds has not been thoroughly evaluated, particularly in the context of peripherally derived neuroinflammation. Our study addresses this gap by examining the effects of PLX3397 on immune cells in the brain, liver, circulation and bone marrow, both in homeostasis and systemic inflammation models. Intriguingly, we demonstrate that PLX3397 treatment not only influences the levels of tissue-resident macrophages, but also affects circulating and bone marrow immune cells beyond the mononuclear phagocyte system (MPS). These alterations in peripheral immune cells disrupt the response to systemic inflammation, consequently impacting the phenotype irrespective of microglial depletion. Furthermore, we observed that a lower dose of PLX3397, which does not deplete microglia, demonstrates similar (non-)MPS effects, both in the periphery and the brain, but fails to fully replicate the peripheral alterations seen in the higher doses, questioning lower doses as a 'peripheral control' strategy. Overall, our data highlight the need for caution when interpreting studies employing this compound, as it may not be suitable for specific investigation of microglial function in the presence of systemic inflammation.


Subject(s)
Microglia , Neuroinflammatory Diseases , Humans , Brain , Inflammation/drug therapy
17.
Front Aging Neurosci ; 15: 1305790, 2023.
Article in English | MEDLINE | ID: mdl-38094503

ABSTRACT

Cognitive impairments, such as learning and memory deficits, may occur in susceptible populations including the elderly and patients who are chronically ill or have experienced stressful events, including surgery, infection, and trauma. Accumulating lines of evidence suggested that peripheral inflammation featured by the recruitment of peripheral immune cells and the release of pro-inflammatory cytokines may be activated during aging and these conditions, participating in peripheral immune system-brain communication. Lots of progress has been achieved in deciphering the core bridging mechanism connecting peripheral inflammation and cognitive impairments, which may be helpful in developing early diagnosis, prognosis evaluation, and prevention methods based on peripheral blood circulation system sampling and intervention. In this review, we summarized the evolving evidence on the prevalence of peripheral inflammation-associated neurocognitive impairments and discussed the research advances in the underlying mechanisms. We also highlighted the prevention and treatment strategies against peripheral inflammation-associated cognitive dysfunction.

18.
Expert Opin Investig Drugs ; 32(11): 1055-1069, 2023.
Article in English | MEDLINE | ID: mdl-37902074

ABSTRACT

INTRODUCTION: Hepatic encephalopathy (HE) is a neuropsychiatric syndrome, in patients with liver disease, which affects life quality and span. Current treatments are lactulose or rifaximin, acting on gut microbiota. Treatments aiming ammonia levels reduction have been tested with little success. AREAS COVERED: Pre-clinical research shows that the process inducing HE involves sequentially: liver failure, altered microbiome, hyperammonemia, peripheral inflammation, changes in immunophenotype and extracellular vesicles and neuroinflammation, which alters neurotransmission impairing cognitive and motor function. HE may be reversed using drugs acting at any step: modulating microbiota with probiotics or fecal transplantation; reducing peripheral inflammation with anti-TNFα, autotaxin inhibitors or silymarin; reducing neuroinflammation with sulforaphane, p38 MAP kinase or phosphodiesteras 5 inhibitors, antagonists of sphingosine-1-phosphate receptor 2, enhancing meningeal lymphatic drainage or with extracellular vesicles from mesenchymal stem cells; reducing GABAergic neurotransmission with indomethacin or golexanolone. EXPERT OPINION: A factor limiting the progress of HE treatment is the lack of translation of research advances into clinical trials. Only drugs acting on microbiota or ammonia reduction have been tested in patients. It is urgent to change the mentality on how to approach HE treatment to develop clinical trials to assess drugs acting on the immune system/peripheral inflammation, neuroinflammation or neurotransmission to improve HE.


Subject(s)
Hepatic Encephalopathy , Humans , Hepatic Encephalopathy/drug therapy , Drugs, Investigational/pharmacology , Drugs, Investigational/therapeutic use , Neuroinflammatory Diseases , Ammonia/therapeutic use , Inflammation
19.
Parkinsonism Relat Disord ; 116: 105890, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37839276

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is associated with peripheral inflammation and abnormal peripheral blood lymphocyte immune responses. Peripheral blood B-lymphocyte subset distributions and whether they are associated with PD are unclear. METHODS: Sixty-one PD patients and sixty-one one-to-one paired healthy controls (HCs) were enrolled. We used flow cytometry to perform immunophenotyping of peripheral B-lymphocyte, in vitro stimulation and measured serum cytokine. The relationship between variables and PD were assessed. RESULTS: The percentage of naive B cells in blood of PD patients was decreased, whereas the percentages of regulatory B cells (Bregs), plasma blast cells (PBCs), and double-negative (DN) B cells were increased. The absolute counts of B-lymphocyte and naive B cells in blood of PD patients were decreased. Regression analysis revealed that alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells were associated with PD. After stimulation, the percentages of Bregs, PBCs, and switched memory (SwM) B cells increased in PD patients. Additionally, increases in GM-CSF-producing B-cell, IFN-γ-producing B-cell, and TNF-α-producing B-cell percentages were noted in PD. Serum levels of a proliferation-inducing ligand (APRIL), B-cell activating factor (BAFF) and soluble CD40 ligand (sCD40L) were elevated in PD and correlated negatively with the UPDRS III score. CONCLUSIONS: Abnormal B-lymphocyte immune responses in peripheral blood may contribute to PD development. Alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells are associated with PD. Furthermore, APRIL, BAFF, and sCD40L could be potential targets for intervention in PD.


Subject(s)
B-Lymphocytes, Regulatory , Parkinson Disease , Humans , Cytokines , Inflammation , Immunity
20.
Res Sq ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37841863

ABSTRACT

Background: Previous study shows that monocyte chemoattractant protein-1 (MCP-1), which is implicated in the peripheral proinflammatory cascade and blood-brain barrier (BBB) disruption, modulates the genetic risks of AD in established AD loci. Methods: In this study, we hypothesized that blood MCP-1 impacts the AD risk of genetic variants beyond known AD loci. We thus performed a genome-wide association study (GWAS) using the logistic regression via generalized estimating equations (GEE) and the Cox proportional-hazards models to examine the interactive effects between single nucleotide polymorphisms (SNPs) and blood MCP-1 level on AD in three cohorts: the Framingham Heart Study (FHS), Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study/Memory and Aging Project (ROSMAP). Results: We identified SNPs in two genes, neuron navigator 3 (NAV3, also named Unc-53 Homolog 3, rs696468) (p < 7.55×10- 9) and Unc-5 Netrin Receptor C (UNC5C rs72659964) (p < 1.07×10- 8) that showed an association between increasing levels of blood MCP-1 and AD. Elevating blood MCP-1 concentrations increased AD risk and AD pathology in genotypes of NAV3 (rs696468-CC) and UNC5C (rs72659964-AT + TT), but did not influence the other counterpart genotypes of these variants. Conclusions: NAV3 and UNC5C are homologs and may increase AD risk through dysregulating the functions of neurite outgrowth and guidance. Overall, the association of risk alleles of NAV3 and UNC5C with AD is enhanced by peripheral MCP-1 level, suggesting that lowering the level of blood MCP-1 may reduce the risk of developing AD for people with these genotypes.

SELECTION OF CITATIONS
SEARCH DETAIL