ABSTRACT
The indiscriminate use of pesticides in agriculture demands the development of devices capable of monitoring contaminations in food supplies, in the environment and biological fluids. Simplicity, easy handling, high sensitivities, and low limits-of-detection (LOD) and quantification are some of the required properties for these devices. In this work, we evaluated the effect of incorporating gold nanoparticles into indigo carmine-doped polypyrrole during the electropolymerization of films for use as an acetylcholinesterase (AChE) enzyme-based biosensor. As proof of concept, the pesticide methyl parathion was tested towards the inhibition of AChE. The enzyme was immobilized simply by drop-casting a solution, eliminating the need for any prior surface modification. The biosensors were characterized with cyclic voltammetry, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The assays for the detection of methyl parathion with films containing polypyrrole, indigo carmine and AChE (PPy-IC-AChE) presented a sensitivity of 5.7 µA cm-2 g-1 mL and a LOD of 12 nmol L-1 (3.0 ng L-1) with a linear range from 1.3 x 10-7 mol L-1 to 1.0 x 10-5 mol L-1. The introduction of gold nanoparticles (AuNP) into the film (PPy-IC-AuNP-AChE) led to remarkable improvements on the overall performance, such as a lower redox potential for the enzymatic reaction, a 145 % increase in sensitivity (14 µA cm-2 g-1 mL), a wider detection dynamic range (from 1.3x10-7 to 1.0x10-3 mol L-1), and a very low LOD of 24 fmol L-1 (64 ag mL-1). These findings underscore the potential of using AuNPs to improve the enzymatic performance of biosensor devices.
Subject(s)
Acetylcholinesterase , Biosensing Techniques , Electrochemical Techniques , Enzymes, Immobilized , Gold , Metal Nanoparticles , Methyl Parathion , Pesticides , Polymers , Pyrroles , Gold/chemistry , Pyrroles/chemistry , Polymers/chemistry , Metal Nanoparticles/chemistry , Pesticides/analysis , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Biosensing Techniques/methods , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Methyl Parathion/analysis , Limit of DetectionABSTRACT
Resumen Los trabajadores agrícolas se exponen frecuentemente a los pesticidas, los cuales pueden afectar el sistema cardiovascular. El objetivo de la investigación fue revisar la asociación entre la exposición ocupacional a pesticidas, el desarrollo de enfermedades cardiovasculares y los biomarcadores utilizados en la vigilancia de la salud de los trabajadores. Para ello se realizó una revisión no sistemática de la literatura en tres bases de datos: Pubmed, Embase y Scopus, con ecuaciones de búsqueda elaboradas con los términos "agrochemicals", "myocardial infarction", "occupational exposure" y "farmers", y se incluyeron artículos publicados entre 2007 y 2022. Se encontró que los pesticidas causan elevación de las cifras de presión arterial en trabajadores expuestos y en mujeres embarazadas se relaciona con hipertensión gestacional y preeclampsia. Respecto al infarto agudo de miocardio (IAM), el contacto con los pesticidas clorpirifós, coumafós, carbofurano, pendimetalina, trifluralina y acilalanina aumentan el riesgo de IAM en mujeres, y entre los trabajadores masculinos la exposición a dibromuro de etileno, maneb/mancozeb y dimetil-ditiocarbamato de zinc se asoció con mayor mortalidad. La vigilancia epidemiológica se realiza principalmente con la medición de la actividad de la acetilcolinesterasa eritrocitaria (AChE). Se puede concluir que la exposición a pesticidas puede desencadenar enfermedades cardiovasculares agudas y crónicas, como elevación de las cifras de presión arterial, IAM fatal y no fatal. Los pesticidas dimetil ditiocarbamato de zinc, clorpirifós, coumafós, carbofurano, paratión y malatión son las sustancias que tienen mayor relación con el desarrollo de enfermedad cardiovascular.
Abstract Farmworkers are frequently exposed to pesticides, which can affect the cardiovascular system. The objective of the research was to review the association between occupational exposure to pesticides and the development of cardiovascular diseases, and the biomarkers used in monitoring the health of workers. For this, a non-systematic review of the literature was carried out in three databases: Pubmed, Embase and Scopus, with search equations prepared with the terms "agrochemicals", "myocardial infarction", "occupational exposure" and "farmers". Articles published between 2007 and 2022 were included. Pesticides were found to cause elevated blood pressure levels in exposed workers, and in pregnant women it is related to gestational hypertension and preeclampsia. Regarding acute myocardial infarction (AMI), contact the pesticides chlorpyrifos, coumaphos, carbofuran, pendimethalin, trifluralin, and acylalanine increased the risk of AMI in women, and among male workers exposure to ethylene dibromide, maneb/mancozeb, and zinc dimethyldithiocarbamate was associated with increased mortality. Epidemiological surveillance is mainly carried out by measuring erythrocyte acetylcholinesterase (AChE) activity. It can be concluded that exposure to pesticides can trigger acute and chronic cardiovascular diseases, such as elevated blood pressure, fatal and non-fatal AMI. Zinc dimethyl dithiocarbamate, chlorpyrifos, coumafos, carbofuran, parathion and malathion pesticides are the substances most closely related to the development of cardiovascular disease.
ABSTRACT
Clomazone is known to contaminate aquatic environments and have a negative impact on macrophytes. However, recent reports suggests that Pontederia crassipes Mart. can withstand clomazone exposure while maintaining growth rates. We hypothesized that this maintenance of growth is supported by photosynthetic plasticity of old leaves (developed before herbicide application), while new leaves (developed after application) exhibit phytotoxic symptoms. To investigate, two experiments were conducted with doses ranging from 0.1 mg L-1 to 0.5 mg L-1 plus untreated controls. Various parameters were measured in old and new leaves over 7, 12, and 15 d post-application, including visual symptoms, chlorophyll index, photosynthetic pigments, chlorophyll fluorescence, gas exchange, glycolate oxidase activity, carbohydrate content, leaf epidermis anatomy, and growth parameters. Clomazone exposure induced chlorosis, particularly in new leaves across all doses. These visual symptoms were accompanied by stomatal closure, restricting gas exchange and CO2 fixation, leading to reduced photosynthetic rates and carbohydrate synthesis. However, clomazone did not affect old leaves, which maintained photosynthetic activity, sustaining essential metabolic processes of the plant, including reproductive functions. By ensuring high reproductive rates and metabolic continuity, old leaves supported the species' persistence despite clomazone presence.
ABSTRACT
Aquatic communities are increasingly exposed to complex mixtures of contaminants, mainly pesticides due to the impact of agricultural activity. The aim of this study was to evaluate the toxicity of an eight-pesticide cocktail on larvae of the South American common toad, Rinella arenarum. The cocktail represents a realistic mixture of insecticides (cypermethrin, chlorpyrifos and lambda-cyhalothrin), herbicides (glyphosate, glufosinate ammonium, prometryn and metolachlor), and a fungicide (pyraclostrobin) previously found in aquatic organisms (Prochilodus lineatus) from the Salado River Basin, an area with strong agricultural pressure. Computational simulations through the Density Functional Tight-Binding method indicated a strong spontaneous trend toward the formation of the cocktail, suggesting that it may act as a novel xenobiotic entity in the environment. The cocktail effects were evaluated in early-developing and premetamorphic larvae, at feasible concentrations found in real scenarios. The mixture led to high mortality and teratogenicity in early-developing larvae. Premetamorphic larvae showed endocrine disruption, oxidative stress, and impairments in detoxification and hepatic functioning. Neurotoxicity, genotoxicity, cardiotoxicity and high mortality under stress conditions were also observed in exposed larvae. This novel evaluation highlights the ecotoxicological risk for aquatic organisms exposed to complex mixtures and underscores the need to consider cocktail effects in studies regarding ecosystems health.
ABSTRACT
The potential neurotoxicity of environmental contaminants, such as pesticides, is implicated in the etiology of neurodevelopmental disorders, particularly given the heightened vulnerability of the developing brain. Among these contaminants, glyphosate, a widely used herbicide, has been linked to alterations in neurodevelopment, though its precise neurotoxic mechanisms are not fully elucidated. In this context, our systematic review evaluates the impact of maternal exposure to glyphosate alone (GLY) or glyphosate-based-herbicide (GBH) on neurodevelopmental and behavioral outcomes in rodent offspring. This assessment encompasses a comprehensive examination of behavioral, biochemical, morphological, and genetic alterations resulting from perinatal glyphosate exposure. The Systematic review protocol was registered in the platform Open Science Framework (OSF) following the guidelines of the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Our analysis demonstrate that glyphosate disrupts redox signaling, metabolic pathways, and neurotransmitter systems, thereby affecting brain architecture and function across genders and developmental stages in rodents. The results of this review elucidate the extensive neurochemical and behavioral disruptions attributed to glyphosate, highlighting the critical need for advanced neurodevelopmental risk assessment methodologies. Such refined evaluations are vital to inform targeted prevention and intervention strategies in the context of environmental neurotoxicants.
ABSTRACT
Chlorpyrifos (CPF) has been used worldwide, but its possible negative effects on macrophytes have been scarcely studied. The main goal of the present work was to assess the potential phytotoxic effects of CPF on different stages (seed and seedling) of the wetland macrophyte Bidens laevis. During the germination of seeds, stimulation of radicle growth at low concentrations of CPF (10 µg/L) and inhibition of its elongation at 80 µg/L CPF were observed. In seedlings, concentrations ≤ 160 µg/L CPF did not exhibit adverse effects on growth after 7 days of exposure, despite the decrease of photosynthetic pigments and carotenoids observed at 40 µg/L CPF compared to the control. Environmentally relevant concentrations of CPF altered neither oxidative stress biomarkers nor pigment contents in seedlings exposed for 48 h, suggesting CPF would be non-toxic to B. laevis in natural scenarios.
Subject(s)
Bidens , Chlorpyrifos , Water Pollutants, Chemical , Wetlands , Chlorpyrifos/toxicity , Water Pollutants, Chemical/toxicity , Bidens/drug effects , Insecticides/toxicity , Germination/drug effects , Oxidative Stress/drug effects , Seedlings/drug effects , Seedlings/growth & developmentABSTRACT
Iprodione is a pesticide that belongs to the dicarboximide fungicide family. This pesticide was designed to combat various agronomical pests; however, its use has been restricted due to its environmental toxicity and risks to human health. In this study, we explored the proteomic changes in the Pseudomonas sp. C9 strain when exposed to iprodione, to gain insights into the affected metabolic pathways and enzymes involved in iprodione tolerance and biodegradation processes. As a result, we identified 1472 differentially expressed proteins in response to iprodione exposure, with 978 proteins showing significant variations. We observed that the C9 strain upregulated the expression of efflux pumps, enhancing its tolerance to iprodione and other harmful compounds. Peptidoglycan-binding proteins LysM, glutamine amidotransferase, and protein Ddl were similarly upregulated, indicating their potential role in altering and preserving bacterial cell wall structure, thereby enhancing tolerance. We also observed the presence of hydrolases and amidohydrolases, essential enzymes for iprodione biodegradation. Furthermore, the exclusive identification of ABC transporters and multidrug efflux complexes among proteins present only during iprodione exposure suggests potential counteraction against the inhibitory effects of iprodione on downregulated proteins. These findings provide new insights into iprodione tolerance and biodegradation by the Pseudomonas sp. C9 strain.
Subject(s)
Bacterial Proteins , Hydantoins , Proteome , Pseudomonas , Pseudomonas/metabolism , Pseudomonas/drug effects , Pseudomonas/genetics , Proteome/metabolism , Hydantoins/pharmacology , Hydantoins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Proteomics/methods , Biodegradation, Environmental , Fungicides, Industrial/pharmacology , Fungicides, Industrial/toxicity , Pesticides/toxicity , Pesticides/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Aminoimidazole Carboxamide/metabolism , Gene Expression Regulation, Bacterial/drug effectsABSTRACT
The use of glyphosate-based herbicides (GBHs) for agricultural production has increased substantially around the world, as have their residues in the environment. Its effects on the central nervous system and neurotoxicity pathways are still not fully understood. The aim of this study was to evaluate the neurotoxic effect of chronic exposure to a GBH in adult rats. Sixty adult male albino Wistar rats were allocated into 6 groups, 2 control groups, and four GBH exposure groups (n = 10/group). The animals were exposed to two concentrations of GBH, orally and by inhalation: 2.99 × 10-3 grams of active ingredient per hectare (g.a.i./ha) and 7.48 × 10-3 g.a.i./ha. The animals were exposed for six months. Behavioral studies were performed. Brain tissue was collected for histopathological, immunohistochemical, and oxidative stress analyses. Animals exposed by inhalation to GBH spent more time in the central area of the open field test, whereas animals exposed to a high oral concentration of GBH spent less time in the open arms in the elevated plus-maze test. Tissue hyperemia occurred only in animals exposed to high concentrations of GBH. There was a greater thickness of the cerebral cortex and an increase in the expression of the BCL-2 in the animals exposed by inhalation to GBH. There was no difference in the doses of malonaldehyde and protein carbonylation between exposed and unexposed groups. The exposure to GBH caused increased levels of anxiety, regardless of the route, high concentrations caused hyperemia and inhalation exposure cause increased cortex thickness and increased BCl-2 expression.
ABSTRACT
Large quantities of chlordecone-based insecticides were produced and used throughout the world. One of its most important uses was to control the damage caused by Cosmopolites sordidus in banana-growing regions. In the islands of Martinique and Guadeloupe, 18,000 ha of farmland are potentially contaminated. Despite the key role played by soil macrofauna in agroecosystems, there are currently no data on their contamination. The aim of this study was to explore the fate of chlordecone (CLD) and its transfer to different organisms of the soil food web. Seven species of invertebrates representing different taxonomic groups and trophic levels of the soil communities of Martinique were targeted and collected in six experimental banana fields, with a level of contamination within a range of values classically observed. Soil samples and macrofauna from the study sites were analysed for CLD and chlordecol (CLDOH) its main transformation product. The contamination of the soil fauna were related to δ15N (trophic level), proportion of soil ingestion (diet) and types of epidermis (mucus or exoskeleton) in order to study the different mechanisms of macrofauna contamination. Presence of CLD and CLDOH could be quantified in all the soil organisms from contaminated fields. Results showed a significant relationship between the CLD contamination of detritivorous and the ash content of their faeces, suggesting that soil ingestion was the main contamination pathway. In contrast, the exoskeleton-bearing diplopod Trigoniulus coralinus and the soft-bodied earthworm Eudrilus eugeniae, both detritivores with a comparable diet, had similar contamination levels, suggesting that the type of tegument has little influence on bioaccumulation. At the scale of the entire trophic network, a significant relationship was uncovered between δ15N values and CLD contamination of the fauna, therefore providing some in situ evidence for a bioamplification process along the soil food chain.
ABSTRACT
Randomized clinical trials are considered the gold standard for studies with dietary interventions, which is mainly due to the fact that they can establish causal relationships between food exposure and body composition measures or biomarkers. The aim of this study was to describe the details of a double-blind, randomized, clinical trial protocol to identify, characterize and evaluate the effects of human dietary exposure to pesticide residues in food. Specific aspects of planning (development of a research question, determination of objectives, selection of participants, randomization and blinding) and performance (recruitment of participants, measures to improve adherence, data collection, follow-up and evaluation of results) are addressed in this study. The study design proved effective in characterizing dietary patterns with foods originating from both conventional and organic agriculture. A total of 148 individuals were recruited for the study. The conventional group was represented by 47 % of the sample and the organic group was represented by 53 %. The practice of evidence-based nutrition has demanded that trials be well designed and systematically performed in the field of clinical nutrition. Therefore, this clinical trial emphasizes the importance of improving studies with toxicological nutrition that assess sources of exposure through food.â¢This double-blind, randomized clinical trial details the protocol for identifying, characterizing, and evaluating the effects of dietary exposure to pesticide residues.â¢The protocol demonstrates that well-designed and systematically conducted trials emphasize the importance of robust methodologies in evidence-based nutrition.â¢In the face of the global climate crisis, this clinical trial underscores the importance of enhancing studies in toxicological nutrition, particularly those evaluating sources of exposure through food, to better understand the dietary impacts on health.
ABSTRACT
The mixture of pesticides is widely employed in cattle farming to combat ectoparasite resistance, such as ticks. The commercial formulation COLOSSO FC30, which contains three active ingredients (Cypermethrin, Chlorpyrifos, and Fenthion), stands out due to its efficiency. However, animals exposed to this product may become vectors of potentially toxic molecules, possibly causing contamination in aquatic and terrestrial ecosystems. In light of this, this study evaluated the eco(geno)toxic potential of the commercial formulation COLOSSO FC30, using plants (Allium cepa L., Lactuca sativa L., Raphanus sativus L., Pennisetum glaucum L., and Triticum aestivum L.) and Artemia salina L. as model organisms. In the phytotoxicity test, the species were ranked in order of sensitivity to the commercial formulation as follows: P. glaucum > L. sativa > T. aestivum > R. sativus. The most sensitive parameters were root length (RL) and shoot length (SL) of seedlings. In the cytogenotoxicity test with A. cepa, cell division was decreased at concentrations from 0.351 mL L-1 in the meristematic region and root F1. Chromosomal aberrations and micronucleus were observed at all concentrations. In the test with A. salina, the IC50 after 24 h of exposure was 0.01207 mL L-1 of the commercial formulation. The results highlight the need for further research and regulations to understand and minimize the potential environmental impacts of COLOSSO FC30.
Subject(s)
Acaricides , Artemia , Chlorpyrifos , Pyrethrins , Chlorpyrifos/toxicity , Pyrethrins/toxicity , Artemia/drug effects , Animals , Acaricides/toxicityABSTRACT
Growing demand for pesticides has created an environment prone to deceptive activities, where counterfeit or adulterated pesticide products infiltrate the market, often escaping rapid detection. This situation presents a significant challenge for sensor technology, crucial in identifying authentic pesticides and ensuring agricultural safety practices. Raman spectroscopy emerges as a powerful technique for detecting adulterants. Coupling the electrochemical techniques allows a more specific and selective detection and compound identification. In this study, we evaluate the efficacy of spectroelectrochemical measurements by coupling a potentiostat and Raman spectrograph to identify paraquat, a nonselective herbicide banned in several countries. Our findings demonstrate that applying -0.70â V during measurements yields highly selective Raman spectra, highlighting the primary vibrational bands of paraquat. Moreover, the selective Raman signal of paraquat was discernible in complex samples, including tap water, apple, and green cabbage, even in the presence of other pesticides such as diquat, acephate, and glyphosate. These results underscore the potential of this technique for reliable pesticide detection in diverse and complex matrices.
Subject(s)
Malus , Paraquat , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Paraquat/analysis , Malus/chemistry , Herbicides/analysis , Brassica/chemistry , Electrochemical Techniques/methods , Food Contamination/analysis , Pesticides/analysisABSTRACT
This study focuses on describing the diversity of pesticides, the knowledge and behaviors of their use, and the acute poisoning symptoms (APS) derived from their exposure from two agricultural production systems (papaya-Carica papaya L.- and chili-Capsicum annuum L.-) in Oaxaca, Mexico. Through surveys, sociodemographic information, characteristics of the production system, knowledge and behaviors in the handling of pesticides, and APS perceived by users were captured. Papaya producers are younger, have fewer years of activity, and have larger agricultural areas than chili producers. Insect attacks and diseases are an essential factor for the application of pesticides. Thirty-one active ingredients (Ais) were identified in papaya and thirty-seven in chili, predominantly insecticides and fungicides of toxicological category IV. Approximately 50% of users apply mixtures of different Ais, have little knowledge and inappropriate behavior in their handling, and report up to five acute pesticide poisoning symptoms, mainly burning and irritation of the skin, burning eyes, itchy skin, runny nose, headache, and watery eyes. The production of papaya and chili are relevant activities for generating economic income, but they risk the producer's and their family's health. Both systems are a potential scenario for the manifestation of diseases due to exposure to pesticides in the medium and long term.
Subject(s)
Capsicum , Carica , Pesticides , Mexico , Humans , Adult , Pesticides/toxicity , Middle Aged , Female , Male , Rural Population , Young Adult , Agriculture , Health Knowledge, Attitudes, Practice , Environmental Exposure , Occupational Exposure , Adolescent , AgedABSTRACT
Animal waste is a potential pollution hazard as it can harbour contaminants, such as antimicrobial residues, mycotoxins, and pesticides, becoming a risk to the public, animal, and environmental health. To assess this risk, 15 experimental broiler chickens orally received contaminants to evaluate excretion levels. An analytical method was previously developed to detect 18 substances in poultry droppings using high-performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS). Contaminants including tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, chlortetracycline, 4-epi-chlortetracycline, tylosin, erythromycin, enrofloxacin, ciprofloxacin, flumequine, florfenicol, sulfachloropyridazine, sulfadiazine, 2,4-dichlorophenoxyacetic acid, zearalenone, alpha- and beta-zearalenol, were extracted with EDTA-McIlvain and acetonitrile. This method showed a p-value < 0.05, RSD < 25%, and R2 > 0.95 in the calibration curves linearity for all analytes. The limit of quantification, selectivity, decision limit for confirmation, matrix effect, precision, and recovery parameters were validated according to European Union document 2021/808/EC, technical report CEN/TR 16059, SANTE/11813/2017 and according to the Veterinary International Conference on Harmonization: VICH GL2 and GL49. This method confirmed the detection of most analytes 12-36 h post-administration and simultaneously detected and quantified mixed contaminants. Thereby, poultry droppings are a potential matrix for spreading contaminants in animal production before slaughter and their control will minimize environmental impacts and mitigate antimicrobial resistance.
Subject(s)
Anti-Infective Agents , Chickens , Food Contamination , Food Safety , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid , Food Contamination/analysis , Anti-Infective Agents/analysis , Environmental Monitoring , Poultry , Drug Residues/analysis , Feces/chemistry , Liquid Chromatography-Mass SpectrometryABSTRACT
The application of agrochemicals in citrus fruits is widely used to improve the quality of crops, increase production yields, and prolong post-harvest life. However, these substances are potentially toxic for humans and the ecosystem due to their widespread use, high stability, and bioaccumulation. Conventional techniques for determining pesticide residues in citrus fruits are chromatographic methods coupled with different detectors. However, in recent years, the need for analytical strategies that are less polluting for the environment has encouraged the appearance of new alternatives, such as sensors and biosensors, which allow selective and sensitive detection of pesticide residues in real time. A comprehensive overview of the analytical platforms used to determine pesticide residues in citrus fruits and citrus-derived products is presented herein. The review focuses on the evolution of these methods since 2015, their limitations, and possible future perspectives for improving pesticide residue determination and reducing environmental contamination.
Subject(s)
Citrus , Fruit , Pesticide Residues , Citrus/chemistry , Pesticide Residues/analysis , Fruit/chemistryABSTRACT
Water contamination with pesticides is one of the major pollution problems in northwestern Mexico, and this is due to the extensive use of pesticides in agriculture. In this research, water samples of ten sampling sites (fishing grounds, beaches, and both) were analyzed in the search for 28 pesticides (organochlorines, organophosphates, pyrethroids, carbamates, among other chemical classes), supplemented with a calculation of the resulting potential environmental risk. Pesticides were separated from the matrix by liquid-liquid extraction and quantified by gas chromatography coupled to electron micro-capture (organohalogenated) and pulsed flame photometric detectors (organophosphates). In addition, the ecotoxicological risk of pesticides in algae, invertebrates, and fish was assessed, based on seawater pesticide concentrations using the Risk Quotient (RQ) and Toxic Units (TU) approach. The results showed 18 pesticides identified in the analyzed samples, where cypermethrin and chlorpyrifos were identified with the maximum concentrations of 1.223 and 0.994 µg L-1, respectively. In addition, these two pesticides have been associated with acute toxic effects on algae, invertebrates, and fish. It is important to pay particular attention to the search for long-term alternatives to the use of chlorpyrifos and cypermethrin due to their high detection rates and the risks associated with their toxic properties. However, the adoption of alternative measures to synthetic pesticide control should be a priority, moving towards sustainable practices such as the use of biopesticides, crop rotation and polycultures.
ABSTRACT
Background: In the last decades, the association of household pesticide usage with Parkinson's disease (PD) has been poorly explored, with discordant results. Based on the Parkinson's Progression Markers Initiative (PPMI) cohort study, we analyzed (1) the association of household pesticide exposure with the development of PD and (2) the effect of household pesticides on progression of PD. Methods: Data from participants of the "FOllow Up persons with Neurologic Disease" (FOUND study) included in the PPMI cohort database were analyzed. The PPMI FOUND study applied the Parkinson's Disease Risk Factor Questionnaire to collect information regarding the use of pesticides in non-work settings during periods of life, and the lifetime pesticide exposure for each participant was estimated. We defined a high use of pesticides if the exposure estimate had a z-score higher than one standard deviation from the mean. Also, we evaluated longitudinal data of people with PD to analyze the effect of high use of household pesticides on disease progression according to motor impairment, cognitive dysfunction, depressive symptoms, and modification of motor clinical phenotype. Results: We analyzed data from 206 people with PD and 64 healthy controls, almost all from the USA. High use of household pesticides was not associated with the odds of developing PD. Regarding PD progression, only cognitive dysfunction was associated with the high use of household fungicides (HR 5.64 per standard deviation increase in exposure estimate, 95% CI 1.41-22.6). Conclusions: Chronic exposure to household pesticides may impact the clinical progression of PD, especially cognitive symptoms.
ABSTRACT
Since 2019, the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) has actively developed pesticide environmental risk assessment (ERA) frameworks adapted to Brazil's specific ecological contexts. This initiative, supported by funding from the Brazilian Ministry of Justice and in partnership with academic institutions, has led to a concerted effort to establish ERA protocols for various taxa, including birds and mammals, soil organisms, aquatic organisms, and reptiles and amphibians. The outcomes of this initiative were disseminated in two distinct workshops held in February and November of 2023, where the agency showcased its research to the technical-regulatory community. This article synthesizes the proposals for birds and mammals and soil organisms. First, we summarize the agency's proposals for both focal and generic species to be incorporated into the ERA and the methodologies for calculating exposure of these taxa to pesticides through agricultural practices, encompassing seed treatment and foliar applications. On this occasion, IBAMA also disclosed the risk assessment tool that the agency is developing for birds and mammals. IBAMA highlighted the knowledge gaps that must be bridged to progress from preliminary (lower-tier) to more comprehensive (higher-tier) assessments. Regarding soil organisms, during the workshop, the presenters shared findings on the most prevalent species of earthworms and enchytraeids in Brazil. They emphasized the need for additional data collection on a regional scale. The agency has also proposed methods for estimating soil organism exposure to pesticides at a screening level and identified specific data gaps that could be addressed to refine assessments at higher tiers. In summary, the workshop communicated the progress in establishing ERA guidelines, which we encapsulate here to benefit the technical-regulatory community. Integr Environ Assess Manag 2024;20:1793-1799. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Subject(s)
Birds , Environmental Monitoring , Mammals , Pesticides , Animals , Risk Assessment/methods , Brazil , Environmental Monitoring/methods , Pesticides/toxicity , Agriculture , Soil Pollutants/analysis , Soil Pollutants/toxicity , Soil/chemistryABSTRACT
The vibrational assignment of the Raman and surface-enhanced Raman scattering (SERS) spectra of the herbicide tebuthiuron (TBH) was accomplished, which allowed unprecedented propositions for adsorption geometries on the surface of silver nanoparticles (AgNP). Ascribed SERS features allowed suggesting that the adsorption occurred through nitrogen atoms of thiadiazole group, since intense band shift assigned to ring mode was marking of the coordination with the metallic surface. AgNP were treated with different surface modifiers that leaded to substantial changes in TBH adsorption geometries. Spectral changes, as the enhancement of out-of-plane ring modes, were indicative of the presence of tilted thiadiazole geometries in relation to the silver surface. Density Functional Theory (DFT) calculations from TBH molecules, in isolation and in interaction with ten-atom cluster of silver leaded to obtain theoretical spectra that gave support to interpret experimental Raman and SERS spectra.
ABSTRACT
INTRODUCTION: The aim of this study was to conduct a systematic literature review to find the association between pesticide exposure and the incidence of suicide in agricultural workers, focusing on analyzing the profile of agricultural workers, the countries with the highest number of publications and, especially, the link between occupational exposure to pesticides, the degradation of mental health and suicide among agricultural workers. METHODS: A systematic literature review was conducted following the PRISMA protocol using Scopus, Web of Science, and PubMed databases, where 33 articles were screened to compose the final portfolio. RESULTS: There is a strong link between pesticide exposure and suicide in agricultural workers. Smoking, alcohol consumption, exposure time, and marital status influence the decision to die by suicide. Brazil and the US lead the ranking in publications, demonstrating that it is not a problem only for developing countries. Organophosphates are the main pesticides used, and they degrade an enzyme crucial for the nervous system, which can result in mental disorders and consequent suicide in agricultural workers. CONCLUSION: There is a need for stricter norms for the commercialization and use of pesticides. There is also a need for providing training to agricultural workers on the application and storage of pesticides, and to communicate about the compounds and the consequences of pesticides to mental health.