Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Biochem Biophys ; 655: 43-54, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30098984

ABSTRACT

Pathological α-synuclein (α-syn) overexpression and iron (Fe)-induced oxidative stress (OS) are involved in the death of dopaminergic neurons in Parkinson's disease (PD). We have previously characterized the role of triacylglycerol (TAG) formation in the neuronal response to Fe-induced OS. In this work we characterize the role of the α-syn variant A53T during Fe-induced injury and investigate whether lipid metabolism has implications for neuronal fate. To this end, we used the N27 dopaminergic neuronal cell line either untransfected (UT) or stably transfected with pcDNA3 vector (as a transfection control) or pcDNA-A53T-α-syn (A53T α-syn). The overexpression of A53T α-syn triggered an increase in TAG content mainly due to the activation of Acyl-CoA synthetase. Since fatty acid (FA) ß-oxidation and phospholipid content did not change in A53T α-syn cells, the unique consequence of the increase in FA-CoA derivatives was their acylation in TAG moieties. Control cells exposed to Fe-induced injury displayed increased OS markers and TAG content. Intriguingly, Fe exposure in A53T α-syn cells promoted a decrease in OS markers accompanied by α-syn aggregation and elevated TAG content. We report here new evidence of a differential role played by A53T α-syn in neuronal lipid metabolism as related to the neuronal response to OS.


Subject(s)
Iron/toxicity , Neurons/metabolism , alpha-Synuclein/metabolism , Animals , Cell Line , Cell Survival/genetics , Lipid Droplets/metabolism , Mutation , Neurons/drug effects , Oxidative Stress/drug effects , Rats , Reactive Oxygen Species/metabolism , Transfection/methods , Triglycerides/metabolism , alpha-Synuclein/genetics
2.
J Funct Biomater ; 8(4)2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29104215

ABSTRACT

Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI coating; then they were seeded with Schwann cells (RSC96) for the examination of cellular response (proliferation and differentiation). In addition, swelling and stiffness (Young's modulus) of the treated scaffolds was evaluated, while their surface morphology was assessed using scanning electron microscopy (SEM). SEM images revealed significant changes in scaffold surface morphology due to degradation caused by the PBS treatment over time. Our cell proliferation assessment over seven days showed that a two-day PBS treatment could be more effective than seven-day PBS treatment for improving cell attachment and elongation. While PEI coating of alginate scaffolds seemed to contribute to cell growth, Schwann cells stayed round on the surface of alginate over the period of cell culture. In conclusion, PBS-treatment may offer the potential to induce surface physical cues due to degradation of alginate, which could improve cell attachment post cell-seeding of 3D-printed alginate scaffolds.

3.
Cancer Biol Ther ; 16(1): 137-48, 2015.
Article in English | MEDLINE | ID: mdl-25482934

ABSTRACT

The radioprotective potential of histamine on healthy tissue has been previously demonstrated. The aims of this work were to investigate the combinatorial effect of histamine or its receptor ligands and gamma radiation in vitro on the radiobiological response of 2 breast cancer cell lines (MDA-MB-231 and MCF-7), to explore the potential molecular mechanisms of the radiosensitizing action and to evaluate the histamine-induced radiosensitization in vivo in a triple negative breast cancer model. Results indicate that histamine significantly increased the radiosensitivity of MDA-MB-231 and MCF-7 cells. This effect was mimicked by the H1R agonist 2-(3-(trifluoromethyl)phenyl)histamine and the H4R agonists (Clobenpropit and VUF8430) in MDA-MB-231 and MCF-7 cells, respectively. Histamine and its agonists enhanced radiation-induced oxidative DNA damage, DNA double-strand breaks, apoptosis and senescence. These effects were associated with increased production of reactive oxygen species, which correlated with the inhibition of catalase, glutathione peroxidase and superoxide dismutase activities in MDA-MB-231 cells. Histamine was able also to potentiate in vivo the anti-tumoral effect of radiation, increasing the exponential tumor doubling time. We conclude that histamine increased radiation response of breast cancer cells, suggesting that it could be used as a potential adjuvant to enhance the efficacy of radiotherapy.


Subject(s)
Breast Neoplasms/metabolism , Histamine/metabolism , Radiation Tolerance , Radiation, Ionizing , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Cellular Senescence/drug effects , Cellular Senescence/radiation effects , DNA Damage/drug effects , DNA Damage/radiation effects , Disease Models, Animal , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Female , Histamine/pharmacology , Humans , MCF-7 Cells , Oxidation-Reduction , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Tumor Burden/drug effects , Tumor Burden/radiation effects , Xenograft Model Antitumor Assays
4.
Neuroscience ; 254: 196-204, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24060823

ABSTRACT

In the present study, we investigated the effects of lesions of A2 neurons of the commissural nucleus of the solitary tract (cNTS) alone or combined with the blockade of angiotensinergic mechanisms on the recovery of arterial pressure (AP) to hemorrhage in conscious rats. Male Holtzman rats (280-320g) received an injection of anti-dopamine-beta-hydroxylase-saporin (12.6ng/60nl; cNTS/A2-lesion, n=28) or immunoglobulin G (IgG)-saporin (12.6ng/60nl, sham, n=24) into the cNTS and 15-21days later had a stainless steel cannula implanted in the lateral ventricle. After 6days, rats were submitted to hemorrhage (four blood withdrawals, 2ml/300g of body weight every 10min). Both cNTS/A2-lesioned and sham rats had similar hypotension to hemorrhage (-62±7 and -73±7mmHg, respectively), however cNTS/A2-lesioned rats rapidly recovered from hypotension (-5±3mmHg at 30min), whereas sham rats did not completely recover until the end of the recording (-20±3mmHg at 60min). Losartan (angiotensin type 1 receptor antagonist) injected intracerebroventricularly (100µg/1µl) or intravenously (i.v.) (10mg/kg of body weight) impaired the recovery of AP in cNTS/A2-lesioned rats (-24±6 and -35±7mmHg at 30min, respectively). In sham rats, only i.v. losartan affected the recovery of AP (-39±6mmHg at 60min). The results suggest that lesion of the A2 neurons in the cNTS facilitates the activation of the angiotensinergic pressor mechanisms in response to hemorrhage.


Subject(s)
Adrenergic Neurons/metabolism , Angiotensin II/metabolism , Hemorrhage/metabolism , Solitary Nucleus/pathology , Adrenergic Neurons/pathology , Animals , Hemorrhage/pathology , Male , Rats , Rats, Sprague-Dawley , Solitary Nucleus/metabolism
5.
Vaccine ; 31(44): 5062-6, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24021308

ABSTRACT

Pseudomonas aeruginosa is an important opportunistic human pathogen that causes severe infections in immunocompromised patients and also in cystic fibrosis patients. The aim of this work was to study if a bovine serum albumin nanoparticles with entrapped antigens extracted from P. aeruginosa would be able to protect mice from nasal infection by this pathogen. Mice were immunized via the subcutaneous route using P. aeruginosa antigens, empty nanoparticles or nanoparticles with entrapped P. aeruginosa antigens on days 0, 7 and 14. The total IgG antibody production and specific IgG1 and IgG2a titer were measured by ELISA. Immunized mice were challenged with live P. aeruginosa and their lungs were collected for histopathology studies. Our data showed that NPPa-vaccinated mice presented a high anti-Pseudomonas IgG1 and a low IgG2a antibody titles and decreased inflammatory signs, with significant reduction in intensity and concentration of inflammatory cells, lower hemorrhagic, edema and hyperemia signs in the lungs of challenge mice with live P. aeruginosa if compared to the other groups. Therefore, this formulation is able to induce a functional response in an animal model of infection and thereby is a promising platform for P. aeruginosa vaccines.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Lung/pathology , Nanoparticles , Pseudomonas Infections/prevention & control , Serum Albumin, Bovine/administration & dosage , Animals , Antibodies, Bacterial/blood , Immunoglobulin G/blood , Inflammation/microbiology , Inflammation/pathology , Lung/microbiology , Male , Mice , Pseudomonas Infections/immunology
6.
Biochim Biophys Acta ; 1828(11): 2646-53, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23899501

ABSTRACT

Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-ß-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology.


Subject(s)
Cholesterol/metabolism , Membrane Microdomains/metabolism , Proanthocyanidins/metabolism , Blotting, Western , Caco-2 Cells , Detergents , Enzyme Activation , Humans , Liposomes , MAP Kinase Signaling System , Signal Transduction
7.
Acta Trop ; 128(1): 27-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23770204

ABSTRACT

It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1×10(-5)M was incubated for 24 and 48h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1×10(-6)M ShPI-I, in the same periods of time, reduced parasite viability about 91-95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents.


Subject(s)
Antiprotozoal Agents/pharmacology , Biological Products/pharmacology , Cell Survival/drug effects , Sea Anemones/chemistry , Serpins/pharmacology , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/isolation & purification , Aquatic Organisms/chemistry , Biological Products/isolation & purification , Chagas Disease/parasitology , Dose-Response Relationship, Drug , Humans , Leishmania/cytology , Leishmania/drug effects , Leishmania/physiology , Microscopy, Electron , Organelles/ultrastructure , Serpins/isolation & purification , Trypanosoma cruzi/cytology , Trypanosoma cruzi/physiology
8.
Exp Eye Res ; 113: 172-81, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23791636

ABSTRACT

Iron accumulation and oxidative stress are hallmarks of retinas from patients with age-related macular degeneration (AMD). We have previously demonstrated that iron-overloaded retinas are a good in vitro model for the study of retinal degeneration during iron-induced oxidative stress. In this model we have previously characterized the role of cytosolic phospholipase A2 (cPLA2) and calcium-independent isoform (iPLA2). The aim of the present study was to analyze the implications of Group V secretory PLA2 (sPLA2), another member of PLA2 family, in cyclooxygenase (COX)-2 and nuclear factor kappa B (NF-κB) regulation. We found that sPLA2 is localized in cytosolic fraction in an iron concentration-dependent manner. By immunoprecipitation (IP) assays we also demonstrated an increased association between Group V sPLA2 and COX-2 in retinas exposed to iron overload. However, COX-2 activity in IP assays was observed to decrease in spite of the increased protein levels observed. p65 (RelA) NF-κB levels were increased in nuclear fractions from retinas exposed to iron. In the presence of ATK (cPLA2 inhibitor) and YM 26734 (sPLA2 inhibitor), the nuclear localization of both p65 and p50 NF-κB subunits was restored to control levels in retinas exposed to iron-induced oxidative stress. Membrane repair mechanisms were also analyzed by studying the participation of acyltransferases in phospholipid remodeling during retinal oxidation stress. Acidic phospholipids, such as phosphatidylinositol (PI) and phosphatidylserine (PS), were observed to show an inhibited acylation profile in retinas exposed to iron while phosphatidylethanolamine (PE) showed the opposite. The use of PLA2 inhibitors demonstrated that PS is actively deacylated during iron-induced oxidative stress. Results from the present study suggest that Group V sPLA2 has multiple intracellular targets during iron-induced retinal degeneration and that the specific role of sPLA2 could be related to inflammatory responses by its participation in NF-κB and COX-2 regulation.


Subject(s)
Cyclooxygenase 2/metabolism , Group V Phospholipases A2/physiology , Macular Degeneration/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Retina/drug effects , Acetylation , Acetyltransferases/metabolism , Animals , Blotting, Western , Cattle , Cytosol/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Ferrous Compounds/toxicity , Group V Phospholipases A2/antagonists & inhibitors , Iron Overload/metabolism , Phosphatidylethanolamines/metabolism , Phosphatidylinositols/metabolism , Phosphatidylserines/metabolism , Phospholipases A/metabolism , Phospholipases A/physiology , Retina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL