Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.077
Filter
1.
Chemistry ; : e202402547, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087783

ABSTRACT

An adaptable Fe(II) tetrahedral cage, [Fe4L4][BF4]8 (L = tris(4-(((E)-pyridin-2-ylmethylene)amino)phenyl) phosphate), has been synthesised via self-assembly. By modulating the orientation of its pendant P=O groups, the cage was found to be capable of encapsulating anionic, neutral, and cationic guests, which was confirmed in the solid state via single-crystal X-ray diffraction (SCXRD) and in solution by high-resolution mass spectroscopy (HR-MS), as well as by NMR (1H, 19F, 31P) studies where possible.

2.
Waste Manag ; 187: 207-217, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059157

ABSTRACT

Seaweed waste, abundant and rich in plant-stimulating properties, has the potential to be transformed into valuable soil amendments through proper composting and utilization management. Given its low carbon-to-nitrogen ratio, co-composting seaweed with carbon-rich cornstarch dregs is an effective strategy. However, the potential application of co-composting largely depends on the efficiency of the composting and the quality of the product. This study explores the effects of adding 10 % corn stalk biochar to a co-composting system of seaweed and cornstarch dregs, alongside varying buffering capacities of phosphates (KH2PO4 and K2HPO4·3H2O-KH2PO4) and MgO, on the degradation efficiency of organic matter, nitrogen transformation, and humification. The results indicate that the addition of biochar and salts enhances the oxygen utilization rate (OUR) and cellulase activity during the thermophilic phase. Additionally, X-ray diffraction (XRD) and parallel factor analysis (PARAFAC) demonstrate more intense solubilization and transformation of proteinaceous substances, along with cellulose degradation. These processes are crucial for enhancing organic matter degradation and humification, significantly boosting degradation (with an increase of 28.6 % to 33.8 %) and humification levels (HA/FA increased by 37.1 % to 49.6 %). Specifically, groups with high buffering capacity significantly promote the formation of NO3--N and NH4+-N, and a higher degree of humification, creating an optimal environment for significantly improving nitrogen retention (increased by 4.80 %). Additionally, this treatment retains and slightly enhances the plant-stimulating properties of seaweed. These findings underscore the potential of integrating biochar with specific ratios of phosphates and MgO to enhance composting efficiency and product quality while preserving the plant-stimulating effects of seaweed.

3.
Chem Biol Interact ; 400: 111144, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39002877

ABSTRACT

Organophosphate flame retardants (OPFRs) pose the significant risks to the environment and human health and have become a serious public health issue. Tricresyl phosphates (TCPs), a group of aryl OPFRs, exhibit neurotoxicity and endocrine disrupting toxicity. However, the binding mechanisms between TCPs and human serum albumin (HSA) remain unknown. In this study, through fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy, molecular docking and molecular dynamics (MD), tri-para-cresyl phosphate (TpCP) was selected to explore potential interactions between HSA and TCPs. The results of the fluorescence spectroscopy demonstrated that a decrease in the fluorescence intensity of HSA and a blue shift were observed with the increasing concentrations of TpCP. The binding constant (Ka) was 2.575 × 104 L/mol, 4.701 × 104 L/mol, 5.684 × 104 L/mol and 9.482 × 104 L/mol at 293 K, 298 K, 303 K, and 310 K, respectively. The fluorescence process between HSA and TpCP involved a mix of static and dynamic quenching mechanism. The gibbs free energy (ΔG0) of HSA-TpCP system was -24.452, -25.907, -27.363, and - 29.401 kJ/mol at 293 K, 298 K, 303 K, and 310 K, respectively, suggesting that the HSA-TpCP reaction was spontaneous. The enthalpy change (ΔH0) and thermodynamic entropy change (ΔS0) of the HSA-TpCP system were 60.83 kJ/mol and 291.08 J/k, respectively, indicating that hydrophobic force was the major driving force in the HSA-TpCP complex. Furthermore, multispectral analysis also revealed that TpCP could alter the microenvironment of tryptophan residue and the secondary structure of HSA and bind with the active site I of HSA. Molecular docking and MD simulations confirmed that TpCP could spontaneously form a stable complex with HSA, which was consistent with the fluorescence experimental results. This study provides novel insights into the mechanisms of underlying the transportation and distribution of OPFRs in humans.

4.
Sci Total Environ ; 948: 174748, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019272

ABSTRACT

BACKGROUND: Human health is commonly threatened by organophosphorus pesticides (OPPs) due to their widespread use and biological characteristics. However, the combined effect of mixtures of OPPs metabolites on the risk of hypertension and potential mechanism remain limited. OBJECTIVES: To comprehensively investigate the effects between OPPs exposure on hypertension risk and explore and underlying mechanism among US general population. METHODS: This cross-sectional study collected US adults who had available data on urine OPPs metabolites (dialkyl phosphate compounds, DAPs) from the National Health and Nutrition Examination Survey (NHANES) to assess the relationships of DAPs with hypertension risk. Survey-weighted logistic regression, restricted cubic spline (RCS), and mixed exposure analysis models [weighted quantile sum regression (WQS) and Bayesian kernel machine regression (BKMR)] were used to analyze individual, dose-response and combined associations between urinary DAPs metabolites and hypertension risk, respectively. Mediation analysis determined the potential intermediary role of serum albumin and liver function in the above associations. RESULTS: Compared with the reference group, participants with the highest tertile levels of DEP, DMTP, DETP, and DMDTP experienced increased risk of hypertension by 1.21-fold (95%CI: 1.02-1.36), 1.20-fold (95%CI: 1.02-1.42), 1.19-fold (95%CI: 1.01-1.40), and 1.17-fold (95%CI: 1.03-1.43), respectively. RCS curve also showed positive exposure-response associations of individual DAPs with hypertension risk. WQS and BKMR analysis further confirmed DAP mixtures were significantly associated with increased risk of hypertension, with DEP identified as a major contributor to the combined effect. Mediation analysis indicated that serum albumin and AST/ALT ratios played crucial mediating roles in the relationships between individual and mixed urinary DAPs and the prevalence of hypertension. CONCLUSION: Our findings provided more comprehensive and novel perspectives into the individual and combined effects of urinary OPPs matabolites on the increased risk of hypertension and the possible driving mechanism, which would be of great significance for environmental control and early prevention of hypertension.

5.
Anal Chim Acta ; 1317: 342908, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030009

ABSTRACT

BACKGROUND: Sugar phosphates (SPx) play important role in the metabolism of the organism. SPx such as glycerate 3-phosphate, fructose 6-phosphate and glucose 6-phosphate in biological samples have the poor stability, similar structure and low abundance, which make their separation and detection more challenging. METHOD: UiO-66-NH2 and ZrO2 coated SiO2(SBA-15) hard-core-shell adsorbents (UiO-66-NH2@SBA-15 and ZrO2@SBA-15) were synthesized, which were further used for dispersive solid-phase extraction for enriching the SPx in biological samples. The protocol was developed by UiO-66-NH2@SBA-15 and ZrO2@SBA-15 coupled with gas chromatography-mass spectrometry for the detection of trace SPx. The univariate experiment and response surface methodology were used to optimize the adsorption and desorption conditions. RESULTS: The adsorbents showed excellent adsorption capacity and specificity towards SPx, which were proved by adsorption and selective experiments. Under the optimized conditions, there were good linearity within the range of 5.0-5000.0 ng mL-1, low limits of detection (0.001-1.0 ng mL-1), low limits of quantification (0.005-5.0 ng mL-1) and good precision (relative standard deviation less than 14.7 % for intra-day and inter-day). The satisfactory recoveries (89.1-113.8 %) and precision (0.5-14.6 %) were obtained when the sorbents were used to extract SPx from serum, saliva and cell samples. Moreover, UiO-66-NH2@SBA-15 was applied to the quantitative analysis of SPx from gastric cancer patients, because of a higher adsorption capacity (169.5-196.1 mg g-1). CONCLUSIONS: UiO-66-NH2@SBA-15 showed great potential in the extraction of SPx in biological samples, which was beneficial to find out the metabolic change of SPx and explain the pathogenesis of the disease.


Subject(s)
Gas Chromatography-Mass Spectrometry , Metal-Organic Frameworks , Silicon Dioxide , Solid Phase Extraction , Zirconium , Zirconium/chemistry , Solid Phase Extraction/methods , Gas Chromatography-Mass Spectrometry/methods , Metal-Organic Frameworks/chemistry , Humans , Silicon Dioxide/chemistry , Adsorption , Limit of Detection , Phosphates/chemistry , Phthalic Acids
6.
Materials (Basel) ; 17(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063810

ABSTRACT

The aim of the research was to investigate the influence of calcium phosphinate (HPCA) and aluminum phosphinate (HPAL) in synergistic systems with organophosphorus compounds, i.e., diphenylcresyl phosphate (CDP) and trichloropropyl phosphate (TCPP), on the thermal stability, flammability, smoke density, and emission of toxic gases during the thermal decomposition of polyurethane (PUR) foams. Thermogravimetric analysis (TGA), along with cone calorimetry and microcalorimetry, were used to assess the influence of fillers on the thermal stability and flammability of PUR foams. The analysis of toxic gas products was performed with the use of a coupled TG-gas analyzer system. The optical density of gases was measured with the use of a smoke density chamber (SDC). The obtained results showed an increase in thermal stability and a decrease in the flammability of the PUR composites. However, the results regarding smoke and gas emissions, as well as toxic combustion by-products, present ambiguity. On one hand, the applied flame retardant systems in the form of PUR-HPCA-CDP and PUR-HPCA-TCPP led to a reduction in the concentration of CO and HCN in the gas by-products. On the other hand, they clearly increased the concentration of CO2, NOx, and smoke emissions. Microbiological studies indicated that the obtained foam material is completely safe for use and does not exhibit biocidal properties.

7.
Int J Toxicol ; : 10915818241259699, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046084

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 10 polyol phosphates. Some of the possible functions in cosmetics that are reported for this ingredient group are chelating agents, oral care agents, and skin conditioning agents. The Panel reviewed relevant data relating to the safety of these ingredients under the intended conditions of use in cosmetic formulations, and concluded that Sodium Phytate, Phytic Acid, Phytin, and Trisodium Inositol Triphosphate are safe in cosmetics in the present practices of use and concentration described in the safety assessment. The Panel also concluded that the data are insufficient to determine the safety of the following 6 ingredients as used in cosmetics: Disodium Glucose Phosphate, Manganese Fructose Diphosphate, Sodium Mannose Phosphate, Trisodium Fructose Diphosphate, Xylityl Phosphate, and Zinc Fructose Diphosphate.

8.
ACS Appl Mater Interfaces ; 16(29): 37641-37655, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38991175

ABSTRACT

Enrichment and quantification of sugar phosphates (SPx) in biological samples were of great significance in biological medicine. In this work, a series of zirconium-based metal-organic frameworks (MOFs) with different degrees of defects, namely, HP-UiO-66-NH2-X, were synthesized using acetic acid as a modulator and were utilized as high-capacity adsorbents for the adsorption of SPx in biological samples. The results indicated that the addition of acetic acid altered the morphology of HP-UiO-66-NH2-X, with corresponding changes in pore size (3.99-9.28 nm) and specific surface area (894.44-1142.50 m2·g-1). HP-UiO-66-NH2-10 showed the outstanding performance by achieving complete adsorption of all four SPx using only 80 µg of the adsorbent. The excellent adsorption efficiency of HP-UiO-66-NH2-10 was also obtained with a wide pH range and short adsorption time (10 min). Adsorption experiments demonstrated that the adsorption process involved chemical adsorption and multilayer adsorption. By utilizing X-ray photoelectron spectroscopy and density functional theory to explain the adsorption mechanism, it was found that various interactions (including coordination, hydrogen bonding, and electrostatic interactions) collectively contributed to the exceptional adsorption capability of HP-UiO-66-NH2-10. Those results indicated that the defect strategy not only increased the specific surface area and pore size, providing additional adsorption sites, but also reduced the adsorption energy between HP-UiO-66-NH2-10 and SPx. Moreover, HP-UiO-66-NH2-10 showed a low limit of detection (0.001-0.01 ng·mL-1), high precision (<13.77%), and accuracy (80.10-111.83%) in serum, liver, and cells, good stability, high selectivity (SPx/glucose, 1:100 molar ratio), and high adsorption capacity (292 mg·g-1 for SPx). The practical detection of SPx from human serum was also verified, prefiguring the great potentials of defective zirconium-based MOFs for the enrichment and detection of SPx in the biological medicine.


Subject(s)
Metal-Organic Frameworks , Zirconium , Zirconium/chemistry , Metal-Organic Frameworks/chemistry , Adsorption , Humans , Phosphates/chemistry , Phthalic Acids
9.
Clin Nutr ESPEN ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39069259

ABSTRACT

BACKGROUND: Aberrations in blood phosphate (Pi) levels, whether presenting as hypo- or hyperphosphatemia, appear to be associated with clinical complications and adverse outcomes in patients admitted to an intensive care unit (ICU). However, the prevalence of Pi disorders and the association with subsequent factors and organ failures leading to death in ICU patients are poorly described. Despite endeavors to understand the etiology and treatment of low Pi levels from systematic reviews and meta-analyses, the literature lacks comprehensive guidance for managing hypophosphatemia. Hyperphosphatemia, on the other hand, appears to be associated with higher mortality among critically ill patients, yet its prevalence among ICU patients, particularly following phosphate repletion, remains unknown. The present study aims to investigate the prevalence of Pi abnormalities upon ICU admission and their incidence during the first week of ICU stay, the factors associated with Pi alterations, and the effect of phosphate repletion on the normalization of Pi levels, and its associations with clinical outcomes. METHODS: This multicentre, prospective, non-interventional cohort study will include at least 1000 consecutive adult ICU patients (≥18 years) as part B of the GUTPHOS study. Sites are eligible if an anticipated minimal inclusion of 50 eligible patients during eight weeks from January 2024 until June 2024 and daily phosphate measurements during the first seven days of ICU stay are expected. All consecutive adult patients admitted to a participating ICU during the recruitment period, lasting up to eight weeks, or up to 120 patients if enrollment reaches that limit earlier, will be included. Study parameters include study site characteristics, patient demographics, daily assessment of Pi levels, Pi-related treatment, feeding details, renal replacement therapy details, the incidence of refeeding-associated hypophosphatemia and administered medication (during the first seven calendar days of ICU stay). There will be a follow-up period of a maximum of 90 days to document 28- and 90-day all-cause mortality as the primary outcome. Multiple logistic regression will be used to assess independent associations with mortality in addition to Receiver Operating Characteristics curves to identify cut-off Pi values associated with mortality and overcorrection. Linear mixed models will be conducted to assess Pi treatment effects. Subgroup analyses will be performed based on Pi abnormalities observed during ICU admission, categorized as normo-, hypo-, hyper-, or mixed, along with its severity (mild, moderate, or severe). DISCUSSION: The GUTPHOS study will be the first multicentre, prospective observational cohort study to investigate the prevalence, management practices, and consequent outcomes associated with Pi abnormalities during the first week of ICU admission. Its results may bridge the current evidence gap in repletion protocols while establishing the groundwork for a subsequent randomized controlled trial.

10.
J Clin Med ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892923

ABSTRACT

Background/Objectives: The general condition of implantology patients is crucial when considering the long- and short-term survival of dental implants. The aim of the research was to evaluate the correlation between the new corticalization index (CI) and patients' condition, and its impact on marginal bone loss (MBL) leading to implant failure, using only radiographic (RTG) images on a pixel level. Method: Bone near the dental implant neck was examined, and texture features were analyzed. Statistical analysis includes analysis of simple regression where the correlation coefficient (CC) and R2 were calculated. Detected relationships were assumed to be statistically significant when p < 0.05. Statgraphics Centurion version 18.1.12 (Stat Point Technologies, Warrenton, VA, USA) was used to conduct the statistical analyses. Results: The research revealed a correlation between MBL after 3 months and BMI, PTH, TSH, Ca2+ level in blood serum, phosphates in blood serum, and vitamin D. A correlation was also observed between CI and PTH, Ca2+ level in blood serum, vitamin D, LDL, HDL, and triglycerides on the day of surgery. After 3 months of the observation period, CI was correlated with PTH, TSH, Ca2+ level in blood serum, and triglycerides. Conclusion: The results of the research confirm that the general condition of patients corresponds with CI and MBL. A patient's general condition has an impact on bone metabolism around dental implants. Implant insertion should be considered if the general condition of the patient is not stable. However, CI has not yet been fully investigated. Further studies are necessary to check and categorize the impact of corticalization on marginal bone loss near dental implants.

11.
Crit Rev Anal Chem ; : 1-23, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855933

ABSTRACT

Reducing monosaccharides and their phosphates are critical metabolites in the central carbon metabolism pathway of living organisms. Variations in their content can indicate abnormalities in metabolic pathways and the onset of certain diseases, necessitating their analysis and detection. Reducing monosaccharides and their phosphates exhibit significant variations in content within biological samples and are present in many isomers, which makes the accurate quantification of reducing monosaccharides and their phosphates in biological samples a challenging task. Various analytical methods such as spectroscopy, fluorescence detection, colorimetry, nuclear magnetic resonance spectroscopy, sensor-based techniques, chromatography, and mass spectrometry are employed to detect monosaccharides and phosphates. In comparison, chromatography and mass spectrometry are highly favored for their ability to simultaneously analyze multiple components and their high sensitivity and selectivity. This review thoroughly evaluates the current chromatographic and mass spectrometric methods used for detecting reducing monosaccharides and their phosphates from 2013 to 2023, highlighting their efficacy and the advancements in these analytical technologies.

12.
Iran J Basic Med Sci ; 27(8): 952-958, 2024.
Article in English | MEDLINE | ID: mdl-38911238

ABSTRACT

Objectives: For safe and effective gene therapy, the ability to deliver the therapeutic nucleic acid to the target sites is crucial. In this study, lactosylated lipid phosphate calcium nanoparticles (lac-LCP) were developed for targeted delivery of pDNA to the hepatocyte cells. The lac-LCP formulation contained lactose-modified cholesterol (CHL), a ligand that binds to the asialoglycoprotein receptor (ASGR) expressed on hepatocytes, and polyethyleneimine (PEI) in the core. Materials and Methods: Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) were used to monitor the chemical modification, and the physicochemical properties of NPs were studied using dynamic light scattering (DLS) and transmission electron microscopy (TEM). To evaluate transfection efficiency, cellular uptake and GFP expression were assessed using fluorescence microscopy and flow cytometry. Results: The results revealed that lactose-targeted particles (lac-LCP) had a significant increase in cellular uptake by hepatocytes. The inclusion of a low molecular weight PEI (1.8 KDa) with a low PEI/pDNA ratio of 1 in the core of LCP, elicited high degrees of GFP protein expression (by 5 and 6-fold), which exhibited significantly higher efficiency than PEI 1.8 KDa and Lipofectamine. Conclusion: The successful functionalization and nuclear delivery of LCP NPs described here indicate its promise as an efficient delivery vector to hepatocyte nuclei.

13.
ACS Appl Mater Interfaces ; 16(27): 34819-34829, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38924763

ABSTRACT

Sodium-ion batteries (SIBs) represent a promising energy storage technology with great safety. Because of their high operating potential, superior structural stability, and prominent thermal stability, polyanion-type phosphates have garnered significant interest in superior prospective cathode materials for SIBs. Nevertheless, the disadvantages of poor intrinsic electronic conductivity, sluggish kinetics, and volume variation during sodiation/desodiation remain great challenges for satisfactory rate performance and cycle stability, which severely hinder their further practical applications. In this work, by adjusting the amounts of pretreated multiwalled carbon nanotubes (CNT) added intentionally at the beginning of the preparation, biphasic polyanion-type phosphate materials (marked as NFC) are synthesized through a one-pot solid state reaction methodology, which are composed of CNT-interwoven Na3V2(PO4)2F3 (NVPF) and a small amount of Na3V2(PO4)3 (NVP). Benefiting from the improved electronic conductivity and unique composition and structure, the optimized sample (labeled as NFC-2) illustrates exceptional cycle stability and remarkable rate performance. The discharge capacities of the NFC-2 electrode are 114.8 and 78.6 mAh g-1 tested at 20 and 5000 mA g-1, respectively. Notably, such an electrode still gives out 75.7% capacity retention upon 10 000 cycles at 5000 mA g-1. In situ X-ray diffraction analysis demonstrates that the NFC-2 cathode has outstanding structural reversibility during charge/discharge cycles. More importantly, such a biphasic material has achieved impressive electrochemical performance within a wide operating temperature range of -20-50 °C. When temperature is decreased to -20 °C, the NFC-2 electrode still delivers an initial discharge capacity of 102.4 mAh g-1 and exhibits a remarkable capacity retention of 97.8% even after 500 cycles at 50 mA g-1. In addition, the sodium-ion full cell assembled by integrating NFC-2 cathode and hard carbon anode shows a satisfying energy density of 431.3 Wh kg-1 at 20 mA g-1 with a better long-term cycle performance. The synergistic effect among high energy NVPF, conductive CNT, and stable NVP may lead to the great improvement in the electrochemical sodium storage performance of the NFC-2 sample. Such biphasic polyanion-type phosphate materials will inject new ideas into the material design for SIBs with excellent electrochemical performance and further promote practical applications of this advanced energy storage technology.

14.
Environ Sci Technol ; 58(27): 12113-12122, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38917351

ABSTRACT

Size and purity of metal phosphate and metal sulfide colloids can control the solubility, persistence, and bioavailability of metals in environmental systems. Despite their importance, methods for detecting and characterizing the diversity in the elemental composition of these colloids in complex matrices are missing. Here, we develop a single-particle inductively coupled plasma time-of-flight mass spectrometry (sp-icpTOF-MS) approach to characterize the elemental compositions of individual metal phosphate and sulfide colloids extracted from complex matrices. The stoichiometry was accurately determined for particles of known composition with an equivalent spherical diameter of ≥∼200 nm. Assisted by machine learning (ML), the new method could distinguish particles of the copper sulfides covellite (CuS), chalcocite (Cu2S), and chalcopyrite particles (CuFeS2) with 75% (for Cu2S) to 99% (for CuFeS2) accuracy. Application of the sp-icpTOF-MS method to particles recovered from natural samples revealed that iron sulfide (FeS) particles in lake sediment contained ∼4% copper and zinc impurities, whereas pure pyrite (FeS2) was identified in hydraulic fracturing wastewater and confirmed by selected area electron diffraction. Colloidal mercury in an offshore marine sediment was present as pure mercury sulfide (HgS), whereas geogenic HgS recovered from an industrial process contained ∼0.08 wt % silver per Hg, enabling source apportionment of these colloids using ML. X-ray absorption spectroscopy confirmed that Hg was predominantly present as metacinnabar (ß-HgS) in the industrial process sample. The determination of impurities in individual colloids, such as zinc and copper in FeS, and silver in HgS may enable improved assessment of their origin, reactivity, and bioavailability potential.


Subject(s)
Colloids , Mass Spectrometry , Phosphates , Soil , Sulfides , Colloids/chemistry , Sulfides/chemistry , Soil/chemistry , Phosphates/chemistry , Geologic Sediments/chemistry , Metals/chemistry
15.
Kidney Res Clin Pract ; 43(4): 492-504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38934034

ABSTRACT

BACKGROUND: This study investigated the association between serum phosphate level and mortality in acute kidney injury (AKI) patients undergoing continuous kidney replacement therapy (CKRT) and evaluated whether this association differed according to disease severity. METHODS: Data from eight tertiary hospitals in Korea were retrospectively analyzed. The patients were classified into four groups (low, normal, high, and very high) based on their serum phosphate level at baseline. The association between serum phosphate level and mortality was then analyzed, with further subgroup analysis being conducted according to disease severity. RESULTS: Among the 3,290 patients identified, 166, 955, 1,307, and 862 were in the low, normal, high, and very high phosphate groups, respectively. The 90-day mortality rate was 63.9% and was highest in the very high group (76.3%). Both the high and very high groups showed a significantly higher 90-day mortality rate than did the normal phosphate group (high: hazard ratio [HR], 1.35, 95% confidence interval [CI], 1.21-1.51, p < 0.001; very high: HR, 2.01, 95% CI, 1.78-2.27, p < 0.001). The low group also exhibited a higher 90-day mortality rate than did the normal group among those with high disease severity (HR, 1.47; 95% CI, 1.09-1.99; p = 0.01) but not among those with low disease severity. CONCLUSION: High serum phosphate level predicted increased mortality in AKI patients undergoing CKRT, and low phosphate level was associated with increased mortality in patients with high disease severity. Therefore, serum phosphate levels should be carefully considered in critically ill patients with AKI.

16.
Polymers (Basel) ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932017

ABSTRACT

With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.

17.
Sci Total Environ ; 940: 173753, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38838494

ABSTRACT

The food and beverage industries in Mexico generate substantial effluents, including nejayote, cheese-whey, and tequila vinasses, which pose significant environmental challenges due to their extreme physicochemical characteristics and excessive organic load. This study aimed to assess the potential of Chlorella vulgaris in bioremediating these complex wastewaters while also producing added-value compounds. A UV mutagenesis treatment (40 min) enhanced C. vulgaris adaptability to grow in the effluent conditions. Robust growth was observed in all three effluents, with nejayote identified as the optimal medium. Physicochemical measurements conducted pre- and post-cultivation revealed notable reductions of pollutants in nejayote, including complete removal of nitrogen and phosphates, and an 85 % reduction in COD. Tequila vinasses exhibited promise with a 66 % reduction in nitrogen and a 70 % reduction in COD, while cheese-whey showed a 17 % reduction in phosphates. Regarding valuable compounds, nejayote yielded the highest pigment (1.62 mg·g-1) and phenolic compound (3.67 mg·g-1) content, while tequila vinasses had the highest protein content (16.83 %). The main highlight of this study is that C. vulgaris successfully grew in 100 % of the three effluents (without additional water or nutrients), demonstrating its potential for sustainable bioremediation and added-value compound production. When grown in 100 % of the effluents, they become a sustainable option since they don't require an input of fresh water and therefore do not contribute to water scarcity. These findings offer a practical solution for addressing environmental challenges in the food and beverage industries within a circular economy framework.


Subject(s)
Biodegradation, Environmental , Chlorella vulgaris , Waste Disposal, Fluid , Wastewater , Chlorella vulgaris/metabolism , Wastewater/chemistry , Mexico , Waste Disposal, Fluid/methods , Beverages , Food Industry , Water Pollutants, Chemical/analysis , Industrial Waste/analysis
18.
Food Res Int ; 190: 114587, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945567

ABSTRACT

The effect of 90, 180 and 270 mEq/kg of the calcium sequestering salts (CSS) disodium phosphate (DSP), trisodium citrate (TSC) and sodium hexametaphosphate (SHMP) on the solubilisation of proteins and minerals and the rheological and textural properties of processed cheese (PC) prepared from Gouda cheese ripened for 30-150 d at 8°C was studied. The solubilisation of individual caseins and Ca and the maximum loss tangent during temperature sweeps of PC made from Gouda cheese increased, while hardness of PC decreased with ripening duration of the Gouda cheese. Levels of soluble Ca in PC increased with increasing concentration of TSC and SHMP, but decreased with increasing concentration of DSP. The solubilisation of casein and Ca due to ripening of Gouda cheese used for manufacturing PC could explain the changes in texture and loss tangent of PC. The results suggest that DSP, TSC or SHMP in PC formulation can form insoluble Ca-phosphate, soluble Ca-citrate or insoluble casein-Ca-HMP complexes, respectively, that influence casein solubilisation differently and together with levels of residual intact casein determine the functional attributes of PC.


Subject(s)
Caseins , Cheese , Food Handling , Rheology , Solubility , Cheese/analysis , Food Handling/methods , Caseins/chemistry , Citrates/chemistry , Calcium/analysis , Calcium/chemistry , Phosphates/analysis , Phosphates/chemistry , Hardness , Time Factors , Calcium Phosphates/chemistry , Calcium Phosphates/analysis
19.
Neurotoxicology ; 103: 206-214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38908438

ABSTRACT

BACKGROUND: Early life exposure to organophosphate (OP) pesticides is linked with adverse neurodevelopment and brain function in children. However, we have limited knowledge of how these exposures affect functional connectivity, a measure of interaction between brain regions. To address this gap, we examined the association between early life OP pesticide exposure and functional connectivity in adolescents. METHODS: We administered functional near-infrared spectroscopy (fNIRS) to 291 young adults with measured prenatal or childhood dialkylphosphates (DAPs) in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a longitudinal study of women recruited during pregnancy and their offspring. We measured DAPs in urinary samples collected from mothers during pregnancy (13 and 26 weeks) and children in early life (ages 6 months, 1, 2, 3, and 5 years). Youth underwent fNIRS while they performed executive function and semantic language tasks during their 18-year-old visit. We used covariate-adjusted regression models to estimate the associations of prenatal and childhood DAPs with functional connectivity between the frontal, temporal, and parietal regions, and a mediation model to examine the role of functional connectivity in the relationship between DAPs and task performance. RESULTS: We observed null associations of prenatal and childhood DAP concentrations and functional connectivity for the entire sample. However, when we looked for sex differences, we observed an association between childhood DAPs and functional connectivity for the right interior frontal and premotor cortex after correcting for the false discovery rate, among males, but not females. In addition, functional connectivity appeared to mediate an inverse association between DAPs and working memory accuracy among males. CONCLUSION: In CHAMACOS, a secondary analysis showed that adolescent males with elevated childhood OP pesticide exposure may have altered brain regional connectivity. This altered neurofunctional pattern in males may partially mediate working memory impairment associated with childhood DAP exposure.


Subject(s)
Memory, Short-Term , Pesticides , Prenatal Exposure Delayed Effects , Humans , Female , Adolescent , Male , Memory, Short-Term/drug effects , Pesticides/toxicity , Pesticides/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Longitudinal Studies , Brain/drug effects , Brain/diagnostic imaging , Spectroscopy, Near-Infrared , Child, Preschool , Infant , Young Adult , Organophosphorus Compounds/urine , Organophosphorus Compounds/toxicity , Organophosphorus Compounds/adverse effects , Organophosphates/toxicity , Organophosphates/adverse effects , Organophosphates/urine , Environmental Exposure/adverse effects
20.
Bioorg Chem ; 149: 107464, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810483

ABSTRACT

While cross-linked hemoglobin tetramers are functional acellular oxygen carriers, their ability to scavenge endogenous nitric oxide (NO) by endothelial pore penetration results in adverse cardiovascular effects. Animal studies established that cross-linked human hemoglobins, chemically joined into a double protein, avoid NO scavenging, presumably due to their larger size preventing penetration into endothelial regions that produce NO. In the present report, we utilize azide-containing acyl phosphate reagents to form cross-linked hemoglobins then bio-orthogonally click-couple them with a bis-alkyne (CuAAC). The production of these larger oxygen-carrying hemoglobin conjugates is obtained in high yields through subunit-specific cross-linking between each ßLys82 ε-amino group. The methyl phosphate leaving groups provide electrostatically induced ß-subunit site-selectivity, producing azido-cross-linked hemoglobin that undergoes highly efficient CuAAC compared with previous cross-linkers. The acyl phosphates also efficiently cross-link both T-state and R-state hemoglobin. The resulting bis- and tris-tetrameric hemoglobin conjugates exhibit oxygen affinity and cooperativity that are comparable to those of the native protein. The hemoglobin derivatives from the process we describe can function as sources of oxygen in biomedical applications, such as in ex-vivo donor organ perfusion.


Subject(s)
Alkynes , Azides , Cross-Linking Reagents , Hemoglobins , Oxygen , Alkynes/chemistry , Hemoglobins/chemistry , Hemoglobins/metabolism , Azides/chemistry , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/chemical synthesis , Humans , Oxygen/chemistry , Molecular Structure , Click Chemistry , Copper/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL