ABSTRACT
This work reports two systematic studies related to yttrium vanadate (YVO4) phosphors. The first evaluates how the annealing temperature and V5+/Y3+ molar ratio determine the emergence of a single YVO4 tetragonal phase, whereas the second concerns the optimal Nd3+ concentration to improve the infrared emission properties for bio-labelling applications. The YVO4:Nd phosphors were synthesized by adapting the non-hydrolytic sol-gel route. For the first study, samples containing different V5+/Y3+ molar ratios (1.02, 1.48, 1.71, or 3.13) were obtained. For the second study, YVO4:Nd phosphors containing different Nd3+ concentrations (1.0, 3.0, 5.0, or 10.0% in mol) were prepared. X-ray diffractometry and RAMAN spectroscopy results revealed that, regardless of the heat-treatment temperature, the V5+/Y3+ molar ratio of 1.48 was the best composition to avoid undesired phases like Y2O3 and V2O5. Photoluminescence results indicated that the sample containing 3.0% in mol of Nd3+ and annealed at 1000 °C presented the best infrared emission properties. This sample displayed an intense broad band in the ultraviolet region, which was ascribed to the VO43- charge transfer band, as well as several bands in the visible and infrared regions, which were attributed to the Nd3+ intraconfigurational f-f transitions. Regardless of the excitation wavelength (ultraviolet, visible, or near-infrared), the mean radiative lifetime was about 12.00 µs. The prepared phosphors presented absorption and emission bands in the biological window (BW) regions, which are located between 750 and 900 nm and between 1000 and 1300 nm, so they are candidates for applications in medical imaging and diagnoses.
Subject(s)
Luminescence , Vanadates/chemistry , Yttrium/chemistry , Particle SizeABSTRACT
Cathode ray tubes (CRTs) have an appreciable amount of rare earth elements (REEs). In this document, the leaching and recovery of the REEs from CRTs, with different organic and inorganic ligands is presented. Among the complexing agents tested, the pyrophosphate ion was found to be the most advantageous for the extraction of REEs from CRTs, as an alternative to the traditional methods that use highly acidic solutions (pHâ¯<â¯1) and elevated temperatures. Thermodynamic analyses predict the formation of soluble REE-pyrophosphate complexes in a pH range of 2-8. Leaching solutions of 0.1â¯M Na4P2O7 at pH 6 and room temperature were employed. REE dissolution from the untreated CRT powder under these conditions was extremely low, due to the encapsulation by other components in the powders, such as ZnS (26%), and the high content of phosphates (6%), that severely limited the solubility of the REEs. To increase extraction, pretreatments were employed to alter and remove the passivating species: roasting at 800⯰C or contact with concentrated solutions of sodium hydroxide at 95⯰C. The combination of these pretreatments completely eliminated the Zn and 79% of the phosphate ion, as well as other base metals, resulting in an improved exposure of REEs for subsequent leaching. Extractions for Y, Eu, Sm, and Ce of 58, 90, 90 and 87%, respectively, were achieved with the pyrophosphate solution at ambient temperature. The REEs were later recovered as oxides by adjusting the solution pH to 11. Subsequently, once the pyrophosphate solution pH is reestablished, it may be reused for leaching.
Subject(s)
Cathode Ray Tube , Metals, Rare Earth , Ligands , Phosphates , PowdersABSTRACT
Mg2SiO4:Tb phosphor exhibits four thermoluminescence (TL) peaks at 124, 244, 300 and 370°C for a heating rate of 2°C/s, 244°C peak being the main dosimetry peak. The irradiated phosphor exhibits CW-OSL response on stimulation with blue (470nm) light. Thermal decay of OSL shows that all the TL traps contribute to CW-OSL signal. Its TL and OSL sensitivities are 0.21 and 0.038, respectively, than that of Al2O3:C (Landauer Inc.). Its CW-OSL response increases linearly up to 30Gy, thereafter increase was supralinear up to the studied dose of 1000Gy. Electron Spin Resonance (ESR) studies were carried out to study the defect centers induced in the phosphor by gamma irradiation and also to identify the centers responsible for the TL process. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least three distinct centers. One of the centers (center I) with an isotropic g-factor 2.0122 is attributable to an intrinsic O(-) radical and this correlates with the main TL peak at 244°C. Center II with an isotropic g-factor 2.0012 is assigned to an F(+)-center (singly ionized oxygen vacancy) and is the likely recombination center for all the TL peaks. Both the centers grow with radiation dose at least up to 1 kGy. Center III with an axial symmetric g-tensor with principal g-values g||=2.0049 and gâ¥=2.0029 is identified as an F(+)-center and is not related to the observed TL peaks in the phosphor.