Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.476
Filter
1.
Heliyon ; 10(11): e31570, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828317

ABSTRACT

Yield potential of maize having distinct genetic diversity in Eastern Himalayan Region (EHR) hill ecologies is often limited by Al toxicity caused due to soil acidity. Stress physiological analysis of local check exposed to 0-300 µM Al under sand culture revealed that 150 µM Al as critical and 200 µM Al as tolerable limit. Increase in Al from 0 to 300 µM reduced total chlorophyll, carotenoids by 74.8 % and 44.7 % respectively and enhanced anthocyanin by 35.3 % whereas LA, SLW and SL have reduced by 81.3%, 21.3 % and 47.8 % respectively. R/S ratio was 51.0 and 13.7 % higher at lower Al levels (50 µM and 100 µM) and photosynthetic, transpiration rate and TDM were 62.5 %, 42.9 % and 78.6 % lower at higher Al (300 µM) as compared to control. TRL, RSA, RDW and RV at higher Al (300 µM) were 92.6 %, 98.7 %, 78.7 and 97.5 % lower over control respectively. Root and shoot Al and PUpE at higher Al (300 µM) was 194.0, 69.2 and 830 % higher whereas PUE decreased to 88.5 % over control. Evaluation of 31 indigenous maize cultivars at 0, 150, and 250 µM Al in sand culture, alongside tolerance scoring and assessment, revealed that Megha-9, Megha-10, and MZM-19 exhibits high Al tolerance, Megha-1, MZM-22, and MZM-42 demonstrated moderate tolerance, whereas Uruapara, Sublgarh, and BRL Para were identified as Al-sensitive. Stress physiological parameters like SDW, TDM, TRL, SL and LA contributed 46.02 % of variability to PC1, whereas A, RV, RSA, anthocyanin and Chlorophyll_b, contributed 13.56 % of variability to PC2. Highest values of CMS, SL, LP, LA, TRL and anthocyanin were recorded in cluster I having sensitive cultivars while highest CMS, SL, LA, LP, TRL and RSA were found in cluster II having moderately tolerant cultivars and highest mean values for TRL, RSA, LP, LA, CMS and SL were recorded in cluster III having highly Al stress tolerant cultivars. The traits viz., A, RV, RSA, anthocyanin and Chlorophyll_b, total chlorophyll and TDM were emanated as physio-morphological for assessing Al toxicity stress tolerance in Maize with high divergence values. Tolerant cultivars showing 63.4 % and 22.4 % higher anthocyanin at 150 µM Al and 250 µM Al than moderately tolerant one in acid soil experiment with increased root Al, shoot Al, root P and shoot P by 42.6 %, 11 %, 95.1 % and 34 % respectively were emerged as promising for novel maize improvement under acid soils of EHR.

2.
Nitric Oxide ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830571

ABSTRACT

Endogenous hydrogen sulfide (H2S) plays an important role in bone metabolism. However, the exact role of H2S in intestinal calcium and phosphorus absorption and its potential in preventing and treating primary osteoporosis remains unknown. Therefore, this study aimed to investigate the potential of H2S in promoting intestinal calcium and phosphorus absorption and alleviating primary osteoporosis. We measured the apparent absorptivity of calcium, femoral bone density, expression and sulfhydration of the duodenal endoplasmic reticulum protein of 57 kDa (ERp57), duodenal cystathionine γ-lyase (CSE) expression, and serum H2S content in adult and old CSE-knockout and wild-type mice. We also assessed intracellular reactive oxygen species (ROS) and Ca2+ content in CSE-overexpressing or knockout intestinal epithelial cell (IEC)-6 cells. In senile mice, CSE knockout decreased endogenous H2S, ERp57 sulfhydration, and intestinal calcium absorption and worsened osteoporosis, which were partially reversed by GYY4137, an H2S donor. CSE overexpression in IEC-6 cells increased ERp57 sulfhydration, protein kinase A and C activity, and intracellular Ca2+, whereas CSE knockout exerted the opposite effects. Furthermore, hydrogen peroxide (H2O2) stimulation had similar effects as in CSE knockout, which were reversed by pretreatment with sodium hydrosulfide before H2O2 stimulation and restored by DL-dithiothreitol. These findings suggest that H2S attenuates primary osteoporosis by preventing ROS-induced ERp57 damage in intestinal epithelial cells by enhancing ERp57 activity and promoting intestinal calcium absorption, thereby aiding in developing therapeutic interventions to prevent osteoporosis.

3.
Obes Surg ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833132

ABSTRACT

PURPOSE: Hypocalcemia post-metabolic bariatric surgery (MBS) is a known long-term complication after hypoabsorptive procedures. However, data on immediate postoperative calcium are limited. Our aim was to evaluate the prevalence of hypocalcemia on the 1st postoperative day after MBS and correlate it with potential associated factors. MATERIALS AND METHODS: We analyzed data from all consecutive index MBS over 1 year. We collected data on demographics and on preoperative and postoperative values of serum calcium (TC), albumin, adjusted calcium (AC-Payne formula), magnesium, phosphorus, preoperative vitamin-D, and postoperative 24-h urine output, intravenous fluids (IVF), bolus intravenous furosemide, and creatine phosphokinase (CPK). Continuous data are expressed as means ± SD (range). Categorical data are presented as frequencies (%). Linear regression was implemented to designate potential correlations. RESULTS: The cohort included 86 patients (58.1% females). The mean preoperative TC was 9.4mg/dL ± 0.4 (8.5-10.5) and mean postoperative TC 7.8mg/dL ± 0.6 (6.3-9.3, 17.0% decrease). The mean preoperative AC was 10.1mg/dL ± 0.4 (9.2-11.2) and mean postoperative AC 8.5mg/dL ± 0.6 (7.0-10.0, 15.8% decrease). Seventy-three patients (84.8%) had abnormally low TC (< 8.5mg/dL), and 43 (50%) abnormally low AC. There was only weak correlation between postoperative TC and AC with magnesium (r = 0.258), phosphorus (r = 0.269), vitamin-D (-0.163), 24-h urine output (r = -0.168), IVF (r = -0.237), bolus furosemide (r = 0.155), and mean operative time (r = 0.010). CONCLUSIONS: In our cohort of patients, hypocalcemia was a real problem but we did not find any significant correlation with the examined factors. Further studies are warranted to validate our findings and investigate other potential correlations.

4.
New Phytol ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853449

ABSTRACT

Modern cultivated rice (Oryza sativa) typically experiences limited growth benefits from arbuscular mycorrhizal (AM) symbiosis. This could be due to the long-term domestication of rice under favorable phosphorus conditions. However, there is limited understanding of whether and how the rice domestication has modified AM properties. This study compared AM properties between a collection of wild (Oryza rufipogon) and domesticated rice genotypes and investigated the mechanisms underlying their differences by analyzing physiological, genomic, transcriptomic, and metabolomic traits critical for AM symbiosis. The results revealed significantly lower mycorrhizal growth responses and colonization intensity in domesticated rice compared to wild rice, and this change of AM properties may be associated with the domestication modifications of plant phosphorus utilization efficiency at physiological and genomic levels. Domestication also resulted in a decrease in the activity of the mycorrhizal phosphorus acquisition pathway, which may be attributed to reduced mycorrhizal compatibility of rice roots by enhancing defense responses like root lignification and reducing carbon supply to AM fungi. In conclusion, rice domestication may have changed its AM properties by modifying P nutrition-related traits and reducing symbiotic compatibility. This study offers new insights for improving AM properties in future rice breeding programs to enhance sustainable agricultural production.

5.
J Anim Sci ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855930

ABSTRACT

A total of 882 pigs [PIC TR4 × (Fast LW × PIC L02); initially 33.2 ± 0.31 kg] were used in a 112-d study to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to changes in dietary P, phytase, and vitamin D in growing pigs. Pens of pigs (20 pigs per pen) were randomized to 1 of 5 dietary treatments with 9 pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: 1) P at 80% of NRC (2012) standardized total tract digestible (STTD) P requirement, 2) NRC STTD P with no phytase, 3) NRC STTD P with phytase providing an assumed release of 0.14 % STTD P from 2,000 FYT/kg, 4) high STTD P (128% of the NRC P) using monocalcium phosphate and phytase, 5) diet 4 with additional vitamin D3 from 25(OH)D3. On d 112, one pig per pen was euthanized for bone, blood, and urine analysis. Additionally, 11 pigs identified as having poor body condition which indicated a history of low feed intake (unhealthy) were sampled. There were no differences between treatments for final body weight, average daily gain, average daily feed intake, gain to feed, or bone ash measurements (treatment × bone interaction) regardless of bone ash method. The response to treatment for bone density and bone mineral content was dependent upon bone sampled (density interaction, P = 0.053; mineral interaction, P = 0.078). For 10th rib bone density, pigs fed high levels of P had increased (P < 0.05) bone density compared with pigs fed NRC levels with phytase, with pigs fed deficient P, NRC levels of P with no phytase, and high STTD P with extra 25(OH)D3 intermediate, with no differences for metacarpals, fibulas, or 2nd ribs. Pigs fed extra vitamin D from 25(OH)D3 had increased (P < 0.05) 10th rib bone mineral content compared with pigs fed deficient P and NRC levels of P with phytase, with pigs fed industry P and vitamin D, and NRC P with monocalcium intermediate. Healthy pigs had greater (P < 0.05) serum Ca, P, vitamin D concentrations, and defatted bone ash than those unhealthy, with no difference between the two health statuses for non-defatted bone ash. In summary, differences between bone ash procedures was more apparent than differences between diets. Differences in bone density and mineral content in response to dietary P and vitamin D were most apparent with 10th ribs.

6.
Nano Lett ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856662

ABSTRACT

Nickel phosphorus trisulfide (NiPS3), a van der Waals 2D antiferromagnet, has received significant interest for its intriguing properties in recent years. However, despite its fundamental importance in the physics of low-dimensional magnetism and promising potential for technological applications, the study of magnetic domains in NiPS3 down to an atomically thin state is still lacking. Here, we report the layer-dependent magnetic characteristics and magnetic domains in NiPS3 by employing linear dichroism spectroscopy, polarized microscopy, spin-correlated photoluminescence, and Raman spectroscopy. Our results reveal the existence of the paramagnetic-to-antiferromagnetic phase transition in bulk to bilayer NiPS3 and provide evidence of the role of stronger spin fluctuations in thin NiPS3. Furthermore, our study identifies three distinct antiferromagnetic domains within atomically thin NiPS3 and captures the thermally activated domain evolution. Our findings provide crucial insights for the development of antiferromagnetic spintronics and related technologies.

7.
J Ren Nutr ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848805

ABSTRACT

OBJECTIVES: Nutrition labeling is important to guide patients with chronic kidney disease (CKD) to make informed choices. This study aimed to evaluate the extent and accessibility of nutrition labeling for sodium, potassium, and phosphorus on food and beverage products in a supermarket. METHODS: A cross-sectional survey was conducted in a [censored for blinded review] supermarket. Information on sodium, potassium, and phosphorus contents was collected from the nutrition fact panel, while information on food additives containing sodium, potassium, and phosphorus was collected from the ingredient list. RESULTS: The survey included 2,577 foods and beverages, and 79.4% of the products included sodium information in nutrition fact panels, but only 11.7% and 2.0% disclosed potassium and phosphorus content, respectively. Sodium-containing additives were found in 78.6% of products, potassium- and phosphorus-containing additives were reported in 28.5% and 46.9% of products, respectively. Sodium-containing additives were typically listed as "salt", potassium-containing additives as "alternative names", and phosphorus-containing additives as "starch" and "E numbers." Imported products were more likely to include sodium (p<0.001) and phosphorus (p=0.036) contents while more locally manufactured products reported sodium- (p=0.003) and phosphorus (p=0.004) containing additives. CONCLUSION: There is limited availability of potassium and phosphorus information on nutrition labels in [censored for blinded review] food and beverage products, which presents significant challenges for individuals with CKD in choosing appropriate products for their dietary needs.

8.
Angew Chem Int Ed Engl ; : e202409093, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850113

ABSTRACT

This study pioneers a novel strategy for synthesizing solar-blind ultraviolet (UV) nonlinear optical (NLO) crystals through functional groups sequential construction, effectively addressing the inherent trade-offs among broad transmittance, enhanced second-harmonic generation (SHG), and optimal birefringence. We have developed two innovative van der Waals layered germanous phosphites: GeHPO3, the first Ge(II)-based oxide NLO crystal which exhibits a black phosphorus-like structure, and K(GeHPO3)2Br, distinguished by its exceptional birefringence and graphene-like structure. Significantly, GeHPO3 exhibits a remarkable array of NLO properties, including the highest SHG coefficient recorded among all NLO crystals for phase-matching and generating 266 nm coherent light via quadruple frequency conversion. It delivers a potent SHG intensity, surpassing KH2PO4 (KDP) by 10.3 times at 1064 nm and ß-BaB2O4 by 1.3 times at 532 nm, complemented by a distinct UV absorption edge at 211 nm and moderate birefringence of 0.062 at 546 nm. Comprehensive theoretical analysis links these exceptional characteristics to the unique NLO-active GeO34- units and the distinctive, highly ordered layered structures. Our findings deliver essential experimental insights into the development of Ge(II)-based optoelectronic materials and present a strategic blueprint for engineering structure-driven functional materials with customized properties.

9.
Article in English | MEDLINE | ID: mdl-38888220

ABSTRACT

The adaptive nature of the galler habit has been tentatively explained by the nutrition, microenvironment, and enemy hypotheses. Soil attributes have direct relationships with these three hypotheses at the cellular and macroecological scales, but their influence has been restricted previously to effects on the nutritional status of the host plant on gall richness and abundance. Herein, we discuss the ionome patterns within gall tissues and their significance for gall development, physiology, structure, and for the nutrition of the gallers. Previous ecological and chemical quantification focused extensively on nitrogen and carbon contents, evoking the carbon-nutrient defence hypothesis as an explanation for establishing the plant-gall interaction. Different elements are involved in cell wall composition dynamics, antioxidant activity, and regulation of plant-gall water dynamics. An overview of the different soil-plant-gall relationships highlights the complexity of the nutritional requirements of gallers, which are strongly influenced by environmental soil traits. Soil and plant chemical profiles interact to determine the outcome of plant-herbivore interactions and need to be addressed by considering not only the soil features and galler nutrition but also the host plant's physiological traits. The quantitative and qualitative results for iron metabolism in gall tissues, as well as the roles of iron as an essential element in the physiology and reproduction of gallers suggest that it may represent a key nutritional resource, aligning with the nutrition hypothesis, and providing an integrative explanation for higher gall diversity in iron-rich soils.

10.
Environ Sci Technol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889135

ABSTRACT

Phosphorus (P) limitation often constrains biological processes in Arctic tundra ecosystems. Although adsorption to soil minerals may limit P bioavailability and export from soils into aquatic systems, the contribution of mineral phases to P retention in Arctic tundra is poorly understood. Our objective was to use X-ray absorption spectroscopy to characterize P speciation and associations with soil minerals along hillslope toposequences and in undisturbed and disturbed low-lying wet sedge tundra on the North Slope, AK. Biogenic mats comprised of short-range ordered iron (Fe) oxyhydroxides were prevalent in undisturbed wet sedge meadows. Upland soils and pond sediments impacted by gravel mining or thermokarst lacked biogenic Fe mats and were comparatively iron poor. Phosphorus was primarily contained in organic compounds in hillslope soils but associated with Fe(III) oxyhydroxides in undisturbed wet sedge meadows and calcium (Ca) in disturbed pond sediments. We infer that phosphate mobilized through organic decomposition binds to Fe(III) oxyhydroxides in wet sedge, but these associations are disrupted by physical disturbance that removes Fe mats. Increasing disturbances of the Arctic tundra may continue to alter the mineralogical composition of soils at terrestrial-aquatic interfaces and binding mechanisms that could inhibit or promote transport of bioavailable P from soils to aquatic ecosystems.

11.
Bioresour Technol ; : 131005, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889868

ABSTRACT

Anaerobic digestion of food waste can recover carbon in the form of biogas, while the high concentration of ammonia nitrogen in the digestion effluent becomes troublesome. Therefore, some new treatment plants use three-phase centrifugation to separate homogenized food waste into nitrogen-rich fine slag for insect cultivation and carbon-rich liquid for anaerobic digestion. To analyze the effects of the carbon-nitrogen separation, an upgraded plant's material and elementary flows were investigated. The three-phase separation process redistributed carbon and nitrogen, and the biogas slurry was the primary output. The principal endpoint for C was the crude oil, capturing 57.1 ±â€¯13.1 % of the total input; the find slag collected 48.3 ±â€¯6.9 % of the total N input, and the biogas slag accepted 52.9 ±â€¯4.4 % of the P input. The carbon-nitrogen separation strategy can improve digestion efficiency and increase treatment benefits significantly, marking a promising direction for future developments in food waste utilization.

12.
Environ Pollut ; : 124402, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906405

ABSTRACT

Excess nitrogen and phosphorus inputs are the main causes of aquatic environmental deterioration. Accurately quantifying and dynamically assessing the regional nitrogen and phosphorus pollution emission (NPPE) loads and influencing factors is crucial for local authorities to implement and formulate refined pollution reduction management strategies. In this study, we constructed a methodological framework for evaluating the spatio-temporal evolution mechanism and dynamic simulation of NPPE. We investigated the spatio-temporal evolution mechanism and influencing factors of NPPE in the Yangtze River Economic Belt (YREB) of China through the pollution load accounting model, spatial correlation analysis model, geographical detector model, back propagation neural network model, and trend analysis model. The results show that the NPPE inputs in the YREB exhibit a general trend of first rising and then falling, with uneven development among various cities in each province. Nonpoint sources are the largest source of land-based NPPE. Overall, positive spatial clustering of NPPE is observed in the cities of the YREB, and there is a certain enhancement in clustering. The GDP of the primary industry and cultivated area are important human activity factors affecting the spatial distribution of NPPE, with economic factors exerting the greatest influence on the NPPE. In the future, the change in NPPE in the YREB at the provincial level is slight, while the nitrogen pollution emissions at the municipal level will develop towards a polarization trend. Most cities in the middle and lower reaches of the YREB in 2035 will exhibit medium to high emissions. This study provides a scientific basis for the control of regional NPPE, and it is necessary to strengthen cooperation and coordination among cities in the future, jointly improve the nitrogen and phosphorus pollution tracing and control management system, and achieve regional sustainable development.

13.
Environ Pollut ; : 124396, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901817

ABSTRACT

This study investigated the influence of plant-derived biochar (PB) and animal-derived biochar (AB) on behavior of heavy metals and phosphorus fractions during sewage sludge composting. PB was highly effective in reducing the bioavailability of Zn and Cu by 39% and 50%, respectively, while AB decreased the bioavailability of Pb (30%) and Cd (12%). Both biochar increased available phosphorus by over 38%. Acid extractable and bioavailable Pb in AB, and water-soluble, oxidizable and total Zn, acid extractable and oxidizable Cu in PB were positively correlated with moderately resistant organic phosphorus (MROP). Besides, in AB, Cd had strong and positive correlation with highly resistant organic phosphorus (HROP). This suggested biochar facilitated the formation of stable organometallic complexes through binding metal ions to phosphorus fractions, with notable differences based on biochar source. FT-IR showed biochar promoted humification, with PB enhancing carboxyl and polysaccharide formation, while AB encouraged quinone and aryl ether structures. These surface functional groups on the biochar likely contributed to heavy metals and phosphorus binding through chelation, adsorption, and electron shuttling.

14.
Article in English | MEDLINE | ID: mdl-38902446

ABSTRACT

Sundarbans is the world's largest and most diverse contiguous mangrove ecosystem. In this pilot study, three plots (around 1 ha each) were selected, where one site (S1) had 1 year of community involvement, another site (S2) had a community network to support the restoration initiatives for 2 years, while a control site (C) was devoid of any post plantation community protection. Rhizophora mucronata (Rhizophoraceae), Sonneretia caseolaris (Lythraceae) and Avicennia marina (Acanthaceae) were planted at the sites in 2012. After 6 years (in 2017), at S1, the monitoring showed low survival rate for salinity-sensitive species, 2% for R. mucronata and 4% for S. caseolaris. At S2, R. mucronata has high survival rates, i.e. 71%, followed by S. caseolaris with 40%, whereas at C, the survival rate of both species was 0%. At S1 and C, the salinity-tolerant A. marina replaced the planted mangroves partially (S1) or entirely (C). At S2, available soil P increased by 17.5%, in 6 years, and the overall blue carbon pool showed a linear increase from 64.4 to 88.6 Mg C ha-1 (34.3% rise). S1 showed a minimum increment in P and the blue carbon pool (6.9% rise), while site C showed fluctuations in the blue carbon pool with only a 3.1% increase. Humic acid and fulvic acid concentrations in the S2 site indicate positive functional carbon sequestration in the edaphic environment. The community involvement increased the plantation cost (567.70 USD) of S2, in comparison to S1 (342.52 USD) and C (117.34 USD), but it has resulted in better restoration and survival of the mangroves. The study concludes that community participation for at least 2 years can play a significant role in the conservation of mangrove ecosystems and the success of restoration initiatives in tidal, saline wetlands and would aid in compliance with the United Nations Sustainable Development Goal 14 (Life Below Water) targets.

15.
J Hazard Mater ; 476: 134975, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38908177

ABSTRACT

Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.

16.
Water Res ; 259: 121865, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38851111

ABSTRACT

The phototrophic capability of Candidatus Accumulibacter (Accumulibacter), a common polyphosphate accumulating organism (PAO) in enhanced biological phosphorus removal (EBPR) systems, was investigated in this study. Accumulibacter is phylogenetically related to the purple bacteria Rhodocyclus from the family Rhodocyclaceae, which belongs to the class Betaproteobacteria. Rhodocyclus typically exhibits both chemoheterotrophic and phototrophic growth, however, limited studies have evaluated the phototrophic potential of Accumulibacter. To address this gap, short and extended light cycle tests were conducted using a highly enriched Accumulibacter culture (95%) to evaluate its responses to illumination. Results showed that, after an initial period of adaptation to light conditions (approximately 4-5 h), Accumulibacter exhibited complete phosphorus (P) uptake by utilising polyhydroxyalkanoates (PHA), and additionally by consuming glycogen, which contrasted with its typical aerobic metabolism. Mass, energy, and redox balance analyses demonstrated that Accumulibacter needed to employ phototrophic metabolism to meet its energy requirements. Calculations revealed that the light reactions contributed to the generation of, at least more than 67% of the ATP necessary for P uptake and growth. Extended light tests, spanning 21 days with dark/light cycles, suggested that Accumulibacter generated ATP through light during initial operation, however, it likely reverted to conventional anaerobic/aerobic metabolism under dark/light conditions due to microalgal growth in the mixed culture, contributing to oxygen production. In contrast, extended light tests with an enriched Tetrasphaera culture, lacking phototrophic genes in its genome, clearly demonstrated that phototrophic P uptake did not occur. These findings highlight the adaptive metabolic capabilities of Accumulibacter, enabling it to utilise phototrophic pathways for energy generation during oxygen deprivation, which holds the potential to advance phototrophic-EBPR technology development.


Subject(s)
Phosphorus , Phototrophic Processes , Phosphorus/metabolism , Betaproteobacteria/metabolism , Rhodocyclaceae/metabolism , Light , Polyhydroxyalkanoates/metabolism , Glycogen/metabolism
17.
Water Res ; 259: 121750, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38851115

ABSTRACT

Phosphorus (P) discharge from agricultural and urban drainage is known for causing downstream eutrophication worldwide. Agricultural best management practices that are designed to reduce P load out of farms target different P species from various sources such as fertilizers leaching and farm soil and canal sediment erosion, however, few studies have assessed the impact of floating aquatic vegetation (FAV) on canal sediment and farm drainage water quality. This study evaluated the impact of FAVs on canal sediment properties and P water quality in drainage canals in the Everglades Agricultural Area in south Florida, USA. Non-parametric statistical methods, correlation analysis, trend analysis and principal component analysis (PCA) were used to determine the relationship between FAV coverage with sediment properties and P water quality parameters. Results showed that FAV coverage was correlated with the highly recalcitrant and most stable form of P in the sediment layer (Residual P Pool). FAV coverage also correlated with the dissolved organic P (DOP) which was the smallest P pool (7 %) of total P concentration in drainage water, therefore FAV coverage had no correlation with farm P load. The trend analysis showed no trend in farm P loads, despite a decline in FAV coverage at farm canals over an 8-year period. Phosphorus content in the sediment surface layer was strongly associated with farm P load and had a significant correlation with particulate P (PP) and soluble reactive P (SRP) which constituted 47 % and 46 % of the total P concentration in the drainage water, respectively. Equilibrium P concentration assays also showed the potential to release SRP from the sediment layer. The P budget established for this study reveals that sediment stores the largest P mass (333 kg P), while FAVs store the smallest P mass (8 kg P) in a farm canal, highlighting the significant contribution of canal sediment to farm P discharges. Further research is required to evaluate the impact of sediment removal and canal maintenance practices that help reduce farm P discharges.


Subject(s)
Agriculture , Geologic Sediments , Phosphorus , Phosphorus/analysis , Florida , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring
18.
Bioresour Technol ; 406: 131014, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901746

ABSTRACT

Polyferric sulfate (PFS) and ferric chloride (FC) were compared for their efficiencies in capturing organic carbon and phosphorus, and their effects on the anaerobic fermentation process of sludge from a pilot-scale two-stage reactor were studied. Both PFS and FC promoted organic carbon and phosphorus capture. Further study revealed that PFS-based sludge with a dosage of 18 mg Fe/Lsewage showed a better volatile fatty acids (VFAs) production performance (202.97 ± 2.38 mg chemical oxygen demand (COD)/g volatile solids (VS)) than that of FC-based sludge (169.25 ± 1.56 mg COD/g VS). Besides, the high dosage of PFS effectively promoted the activities of the α-glucosidase and proteases. The dissimilatory iron reduction process enhanced sludge flocs disintegration and the conversion of carbohydrates and proteins to VFAs. Non-hydroxyapatite phosphorus predominated in the total phosphorus of all samples. This study contributes to developing strategies for optimizing iron-based sludge management and high-value product recovery.

19.
Sci Total Environ ; 940: 173677, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823711

ABSTRACT

Eutrophication is a significant environmental problem caused by nutrient loads from both point and non-point sources. Weather variables, particularly precipitation, affect the concentration of nutrients in water bodies, particularly those from non-point sources, in two contrasting ways. Heavy precipitation causes surface runoff which transports pollutants to rivers and increases nutrient concentration. Conversely, increased river flow can dilute the concentration, lowering it. This study investigates the impact of extreme precipitation, prolonged precipitation, and precipitation after a dry period on the total phosphorus concentration in the Moehne and Erft rivers in Germany, given the projected increase in frequency of extreme precipitation events and long drought periods due to climate change. The study comprises two parts: selecting extreme weather days from 2001 to 2021 and comparing observed Total Phosphorus concentrations with estimated concentrations derived from Generalized Additive Models and linear regression based on the discharge-concentration relationship. Changes in river TP concentration in response to continuous precipitation and precipitation after a dry period were also studied. Our results showed that during wet extreme and post-dry period rainfall events, TP concentration consistently surpassed expected values, underscoring the profound influence of intense rainfall on nutrient mobilization. However, we observed the impact of continuous rainfall to be non-unidirectional. Our work is distinguished by three key innovations: 1) addressing limitations in studying the effects of extreme weather on water quality due to limited temporal resolution, 2) incorporating both linear and non-linear modeling approaches for discharge-concentration relationships, and 3) performing a comprehensive analysis of temporal and spatial patterns of Total Phosphorus concentrations in response to varying rainfall patterns.

20.
Sci Total Environ ; 945: 173912, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871329

ABSTRACT

Coral reef ecosystems have been severely ravaged by global warming and eutrophication. Eutrophication often originates from nitrogen (N) overloading that creates stoichiometric phosphorus (P) limitation, which can be aggravated by sea surface temperature rises that enhances stratification. However, how P-limitation interacts with thermal stress to impact coral-Symbiodiniaceae mutualism is poorly understood and underexplored. Here, we investigated the effect of P-limitation (P-depleted vs. P-replete) superimposed on heat stress (31 °C vs. 25 °C) on a Symbiodinium strain newly isolated from the coral host by a 14-day incubation experiment. The heat and P-limitation co-stress induced an increase in alkaline phosphatase activity and reppressed cell division, photosynthetic efficiency, and expression of N uptake and assimilation genes. Moreover, P limitation intensified downregulation of carbon fixation (light and dark reaction) and metabolism (glycolysis) pathways in heat stressed Symbiodinium. Notably, co-stress elicited a marked transcriptional downregulation of genes encoding photosynthates transporters and microbe-associated molecular patterns, potentially undermining the mutualism potential. This work sheds light on the interactive effects of P-limitation and heat stress on coral symbionts, indicating that nutrient imbalance in the coral reef ecosystem can intensify heat-stress effects on the mutualistic capacity of Symbiodiniaceae.

SELECTION OF CITATIONS
SEARCH DETAIL
...