Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
J Microbiol Biotechnol ; 34(9): 1-11, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39113199

ABSTRACT

The disturbance of brain biochemical substances serves as a primary cause and aggravating factor of depression. This study aimed to investigate the principal components of Picea mariana and its effect on reserpine-induced depression mice,w ith its relationship with brain central transmitters and related proteins. Methods: The main constituents of Picea mariana essential oil (PMEO) were analyzed by GC-MS spectrometry. The quiescent time in the tail suspension test (TST) and forced swim test (FST), along with the weight change of the mice was detected. The number of normal neurons was quantified through Nissl staining. Immunohistochemistry was employed to determine the levels of 5HT-1A and 5HT-2A in the brain. Western blotting was utilized to detect 5HT-2A, CRF and TrkB protein levels. RTqPCR was used to detect the mRNA levels of 5HT-1A, 5HT-2A, TrkB, CRF, and BDNF. The main active ingredients of PMEOs were (-) -bornyl acetate (44.95%), γ-Terpinene (14.17%), and ß-Pinene (10.12%). PMEOs effectively improved the retardation and weight loss due to anorexia in depression-like mice. This improvement was associated with an increase in the number of normal neurons. After administering different doses of PMEOs, the levels of 5HT-1A, 5HT-2A, CRF, and TrkB were found to be increased in brain tissue. RT-qPCR revealed that the mRNA levels of CRF, 5HT-1A, and 5HT-2A were generally upregulated, whereas TrkB and BDNF were downregulated. Conclusion: PMEO can effectively alleviate depression induced by reserpine, which may be attributed to its regulation of 5HT-1A, 5HT-2A, CRF and TrkB protein expression, thus reducing brain nerve injury.

2.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37875130

ABSTRACT

Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.


Subject(s)
Picea , Phylogeny , Picea/genetics , North America
3.
Plant Environ Interact ; 4(4): 188-200, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37583877

ABSTRACT

Predicting vegetation phenology in response to changing environmental factors is key in understanding feedbacks between the biosphere and the climate system. Experimental approaches extending the temperature range beyond historic climate variability provide a unique opportunity to identify model structures that are best suited to predicting phenological changes under future climate scenarios. Here, we model spring and autumn phenological transition dates obtained from digital repeat photography in a boreal Picea-Sphagnum bog in response to a gradient of whole ecosystem warming manipulations of up to +9°C, using five years of observational data. In spring, seven equally best-performing models for Larix utilized the accumulation of growing degree days as a common driver for temperature forcing. For Picea, the best two models were sequential models requiring winter chilling before spring forcing temperature is accumulated. In shrub, parallel models with chilling and forcing requirements occurring simultaneously were identified as the best models. Autumn models were substantially improved when a CO2 parameter was included. Overall, the combination of experimental manipulations and multiple years of observations combined with variation in weather provided the framework to rule out a large number of candidate models and to identify best spring and autumn models for each plant functional type.

4.
Oecologia ; 201(1): 19-29, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36471066

ABSTRACT

When investigating relationships between species' niches and distributions, niches can be divided demographically, resulting in unique niches for different life stages. This approach can identify changing substrate requirements throughout a species' life cycle. Using non-metric multidimensional scaling, we quantified microsite conditions associated with successful recruitment in the tundra landscape and successful seed production amongst adult trees of black spruce (Picea mariana) at subarctic treeline in Yukon, Canada to assess how life stage-specific requirements may impact the distribution of this widespread boreal tree species. Treeline ecotones in this region showed high heterogeneity in tundra microsites available for establishment. Black spruce exhibited changing microsite associations from germination to reproductive maturity, which were mainly driven by changes in plant community and soil moisture. These associations limit the microsites where individuals can establish and reproduce to a subset available within the heterogeneous landscape. Overall, we suggest that (1) substrates suitable for early recruitment are limited at the range edge; and (2) reproductive adults have a narrow niche, limiting successful seed production in adults and forming sink populations where suitable conditions are limited. Our multivariate assessment of microsite suitability can provide valuable insights into the spatial distribution of a species throughout its life cycle and identify life stage-specific constraints to range expansion.


Subject(s)
Picea , Humans , Seedlings , Germination , Trees , Demography
5.
Mycorrhiza ; 32(1): 67-81, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35034180

ABSTRACT

Many trees depend on symbiotic ectomycorrhizal fungi for nutrients in exchange for photosynthetically derived carbohydrates. Trees growing in peatlands, which cover 3% of the earth's terrestrial surface area yet hold approximately one-third of organic soil carbon stocks, may benefit from ectomycorrhizal fungi that can efficiently forage for nutrients and degrade organic matter using oxidative enzymes such as class II peroxidases. However, such traits may place a higher carbon cost on both the fungi and host tree. To investigate these trade-offs that might structure peatland ectomycorrhizal fungal communities, we sampled black spruce (Picea mariana (Mill.)) seedlings along 100-year-old peatland drainage gradients in Minnesota, USA, that had resulted in higher soil nitrogen and canopy density. Structural equation models revealed that the relative abundance of the dominant ectomycorrhizal fungal genus, Cortinarius, which is known for relatively high fungal biomass coupled with elevated class II peroxidase potential, was negatively linked to site fertility but more positively affected by recent host stem radial growth, suggesting carbon limitation. In contrast, Cenococcum, known for comparatively lower fungal biomass and less class II peroxidase potential, was negatively linked to host stem radial growth and unrelated to site fertility. Like Cortinarius, the estimated relative abundance of class II peroxidase genes in the ectomycorrhizal community was more related to host stem radial growth than site fertility. Our findings indicate a trade-off between symbiont foraging traits and associated carbon costs that consequently structure seedling ectomycorrhizal fungal communities in peatlands.


Subject(s)
Mycobiome , Mycorrhizae , Picea , Seedlings , Soil , Soil Microbiology , Trees
6.
Sci Total Environ ; 794: 148514, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34218146

ABSTRACT

An increase in frequency, intensity and duration of drought events affects forested ecosystems. Trees react to these changes by adjusting stomatal conductance to maximize the trade-off between carbon gains and water losses. A better understanding of the consequences of these drought-induced physiological adjustments for tree growth could help inferring future productivity potentials of boreal forests. Here, we used samples from a forest inventory network in Canada where a decline in growth rates of black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) occurred in 1988-1992, an exceptionally dry period, to verify if this growth decline resulted from physiological adjustments of trees to drought. We measured carbon and oxygen isotope ratios in growth rings of 95 spruces and 49 pines spanning 1985-1993. We used 13C discrimination (Δ13C) and 18O enrichment (Δ18O) as proxies for intrinsic water use efficiency and stomatal conductance, respectively. We studied how inter-annual variability in isotopic signals was linked to climate moisture index, vapor pressure deficit and annual snowfall amount. We found significantly lower Δ13C values over 1988-1990, and significantly higher Δ18O values in 1988-1989 and 1991 compared to the 1985-1993 averages. We also observed that a low climatic water balance and a high vapor pressure deficit were linked with low Δ13C and high Δ18O in the two study species, in parallel with low growth rates. The latter effect persisted into the year following drought for black spruce, but not for jack pine. These findings highlight that small differences in physiological parameters between species could translate into large differences in post-drought recovery. The stronger and longer lasting impact on black spruce compared to jack pine suggests a less efficient carbon use and a lower acclimation potential to future warmer and drier climate conditions.


Subject(s)
Picea , Pinus , Canada , Droughts , Ecosystem , Trees
7.
Front Plant Sci ; 12: 658880, 2021.
Article in English | MEDLINE | ID: mdl-33995456

ABSTRACT

We investigated whether stand species mixture can attenuate the vulnerability of eastern Canada's boreal forests to climate change and insect epidemics. For this, we focused on two dominant boreal species, black spruce [Picea mariana (Mill.) BSP] and trembling aspen (Populus tremuloides Michx.), in stands dominated by black spruce or trembling aspen ("pure stands"), and mixed stands (M) composed of both species within a 36 km2 study area in the Nord-du-Québec region. For each species in each stand composition type, we tested climate-growth relations and assessed the impacts on growth by recorded insect epidemics of a black spruce defoliator, the spruce budworm (SBW) [Choristoneura fumiferana (Clem.)], and a trembling aspen defoliator, the forest tent caterpillar (FTC; Malacosoma disstria Hübn.). We implemented linear models in a Bayesian framework to explain baseline and long-term trends in tree growth for each species according to stand composition type and to differentiate the influences of climate and insect epidemics on tree growth. Overall, we found climate vulnerability was lower for black spruce in mixed stands than in pure stands, while trembling aspen was less sensitive to climate than spruce, and aspen did not present differences in responses based on stand mixture. We did not find any reduction of vulnerability for mixed stands to insect epidemics in the host species, but the non-host species in mixed stands could respond positively to epidemics affecting the host species, thus contributing to stabilize ecosystem-scale growth over time. Our findings partially support boreal forest management strategies including stand species mixture to foster forests that are resilient to climate change and insect epidemics.

8.
Glob Chang Biol ; 27(14): 3358-3366, 2021 07.
Article in English | MEDLINE | ID: mdl-33872446

ABSTRACT

Phenological shifts, induced by global warming, can lead to mismatch between closely interacting species. The eastern spruce budworm, Choristoneura fumiferana, an important outbreaking insect defoliator in North America, mainly feeds on balsam fir, Abies balsamea, which has historically been well synchronized with the insect. But as climate change pushes the northern range limit of the budworm further north into the boreal forest, the highly valuable black spruce, Picea mariana, historically protected against the budworm by its late budburst phenology, is suffering increased defoliation during the current outbreak. We tested the hypothesis that rising temperatures can lead, not to a mismatch, but to an improved match between the budworm and black spruce through differential phenological advancement. For 3 years, eastern spruce budworm larvae were reared from instar 2 to pupae, on both black spruce and balsam fir, in a temperature free-air controlled enhancement experiment (T-FACE) consisting in 24 field plots, half of which were heated at +2°C from March to October. Our results show that every year, larval development was faster on heated trees and pupation was earlier than on unheated trees. Bud development was also accelerated in heated trees of both species. However, there was no difference in mass between pupae that developed at +2°C and controls at the end of the season. Finally, we found no difference either in development rate or pupal mass between larvae reared on black spruce and those reared on balsam fir. This suggests that under higher temperature regimes, eastern spruce budworm will be as successful on black spruce as on balsam fir, as black spruce budburst becomes better synchronized with the insect's emergence from diapause. This could lead to critical changes in outbreak dynamics and severity with important ecological state shifts at the landscape level.


Subject(s)
Abies , Moths , Picea , Animals , North America , Temperature
9.
Mol Biol Rep ; 48(3): 2963-2971, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33635471

ABSTRACT

Due mainly to large genome size and prevalence of repetitive sequences in the nuclear genome of spruce (Picea Mill.), it is very difficult to develop single-copy genomic microsatellite markers. We have developed and characterized 25 polymorphic, single-copy genic microsatellites from white spruce (Picea glauca (Moench) Voss) EST sequences and determined their informativeness in white spruce and black spruce (Picea mariana (Mill.) B.S.P.) and inheritance in black spruce. White spruce EST sequences from NCBI dbEST were searched for the presence of microsatellite repeats. Forty-seven sequences containing dinucleotide, trinucleotide, tetranucleotide and compound repeats were selected to develop primers. Twenty-five of the designed primer pairs yielded scorable amplicons, with single-locus patterns, and were characterized in 20 individuals each of white spruce and black spruce. All 25 microsatellites were polymorphic in white spruce and 24 in black spruce. The number of alleles at a locus ranged from two to 18, with a mean of 8.8 in white spruce, and from one to 17, with a mean of 7.6 in black spruce. The expected heterozygosity/polymorphic information content ranged from 0.10 to 0.92, with a mean of 0.67 in white spruce, and from 0 to 0.93, with a mean of 0.59 in black spruce. Microsatellites with dinucleotide and compound repeats were more informative than those with trinucleotide and tetranucleotide repeats. Eighteen microsatellite markers polymorphic between the parents of a black spruce controlled cross inherited in a single-locus Mendelian fashion. The microsatellite markers developed can be applied for various genetics, genomics, breeding, and conservation studies and applications.


Subject(s)
DNA, Plant/genetics , Expressed Sequence Tags/metabolism , Gene Dosage , Microsatellite Repeats/genetics , Picea/genetics , Chi-Square Distribution , Genotype , Inheritance Patterns/genetics , Nucleotide Motifs/genetics
10.
Plant Soil ; 466: 649-674, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-36267144

ABSTRACT

Aims: Slow decomposition and isolation from groundwater mean that ombrotrophic peatlands store a large amount of soil carbon (C) but have low availability of nitrogen (N) and phosphorus (P). To better understand the role these limiting nutrients play in determining the C balance of peatland ecosystems, we compile comprehensive N and P budgets for a forested bog in northern Minnesota, USA. Methods: N and P within plants, soils, and water are quantified based on field measurements. The resulting empirical dataset are then compared to modern-day, site-level simulations from the peatland land surface version of the Energy Exascale Earth System Model (ELM-SPRUCE). Results: Our results reveal N is accumulating in the ecosystem at 0.2 ± 0.1 g N m-2 year-1 but annual P inputs to this ecosystem are balanced by losses. Biomass stoichiometry indicates that plant functional types differ in N versus P limitation, with trees exhibiting a stronger N limitation than ericaceous shrubs or Sphagnum moss. High biomass and productivity of Sphagnum results in the moss layer storing and cycling a large proportion of plant N and P. Comparing our empirically-derived nutrient budgets to ELM-SPRUCE shows the model captures N cycling within dominant plant functional types well. Conclusions: The nutrient budgets and stoichiometry presented serve as a baseline for quantifying the nutrient cycling response of peatland ecosystems to both observed and simulated climate change. Our analysis improves our understanding of N and P dynamics within nutrient-limited peatlands and represents a crucial step toward improving C-cycle projections into the twenty-first century.

11.
Ecol Evol ; 11(24): 18271-18287, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003672

ABSTRACT

Merging robust statistical methods with complex simulation models is a frontier for improving ecological inference and forecasting. However, bringing these tools together is not always straightforward. Matching data with model output, determining starting conditions, and addressing high dimensionality are some of the complexities that arise when attempting to incorporate ecological field data with mechanistic models directly using sophisticated statistical methods. To illustrate these complexities and pragmatic paths forward, we present an analysis using tree-ring basal area reconstructions in Denali National Park (DNPP) to constrain successional trajectories of two spruce species (Picea mariana and Picea glauca) simulated by a forest gap model, University of Virginia Forest Model Enhanced-UVAFME. Through this process, we provide preliminary ecological inference about the long-term competitive dynamics between slow-growing P. mariana and relatively faster-growing P. glauca. Incorporating tree-ring data into UVAFME allowed us to estimate a bias correction for stand age with improved parameter estimates. We found that higher parameter values for P. mariana minimum growth under stress and P. glauca maximum growth rate were key to improving simulations of coexistence, agreeing with recent research that faster-growing P. glauca may outcompete P. mariana under climate change scenarios. The implementation challenges we highlight are a crucial part of the conversation for how to bring models together with data to improve ecological inference and forecasting.

12.
New Phytol ; 229(3): 1431-1439, 2021 02.
Article in English | MEDLINE | ID: mdl-32981122

ABSTRACT

Bordered pits of many conifers include a torus-margo structure acting as a valve that prevents air from spreading between tracheids, although the extent of torus deflection as a function of applied pressure is not well known. Models were developed from images of pits in roots and stems of Picea mariana (Mill.) BSP. A computational solid mechanics approach was utilised to determine the extent of torus deflection from pressure applied to the torus and margo. Torus deflection increased in nonlinear fashion with applied pressure. The average pressure required for sealing the pit was 0.894 MPa for stems and 0.644 MPa for roots, although considerable variation was apparent between individual pits. The pits of roots were wider and deeper than those of stems. For stems, the pit depth did not increase with pit width; thus the torus displacement needed to seal the pit was less than for pits from roots. The pressure required to seal the pit depends upon anatomical characteristics such as pit width and pit depth. Although the torus displacement for sealing was greater for roots because of their greater depth, the pressures leading to sealing were not significantly different between roots and stems.


Subject(s)
Picea , Tracheophyta , Cycadopsida , Plant Roots
13.
Ecol Evol ; 10(17): 9271-9282, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32953060

ABSTRACT

Predicted increases in drought and heat stress will likely induce shifts in species bioclimatic envelopes. Genetic variants adapted to water limitation may prove pivotal for species response under scenarios of increasing drought. In this study, we aimed to explore this hypothesis by investigating genetic variation in 16 populations of black spruce (Picea mariana) in relation to climate variables in Alaska. A total of 520 single nucleotide polymorphisms (SNPs) were genotyped for 158 trees sampled from areas of contrasting climate regimes. We used multivariate and univariate genotype-by-environment approaches along with available gene annotations to investigate the relationship between climate and genetic variation among sampled populations. Nine SNPs were identified as having a significant association with climate, of which five were related to drought stress response. Outlier SNPs with respect to the overall environment were significantly overrepresented for several biological functions relevant for coping with variable hydric regimes, including osmotic stress response. This genomic imprint is consistent with local adaptation of black spruce to drought stress. These results suggest that natural selection acting on standing variation prompts local adaptation in forest stands facing water limitation. Improved understanding of possible adaptive responses could inform our projections about future forest dynamics and help prioritize populations that harbor valuable genetic diversity for conservation.

14.
Glob Chang Biol ; 26(6): 3639-3657, 2020 06.
Article in English | MEDLINE | ID: mdl-32181545

ABSTRACT

Rising atmospheric carbon dioxide (CO2 ) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA ) increased and maximum photosynthetic rates declined in warm-grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax , and of electron transport, Jmax ) was reduced in warm-grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ , respectively) and the thermal optimum for Jmax . In both species, the ToptA was positively correlated with both EaV and EaJ , but negatively correlated with the ratio of Jmax /Vcmax . Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ ) show no response to elevated CO2 .


Subject(s)
Picea , Tracheophyta , Acclimatization , Carbon Dioxide , Photosynthesis , Plant Leaves , Temperature , Trees
15.
Glob Chang Biol ; 26(3): 1767-1777, 2020 03.
Article in English | MEDLINE | ID: mdl-31692158

ABSTRACT

The effects of climate change on high-latitude forest ecosystems are complex, making forecasts of future scenarios uncertain. The predicted lengthening of the growing season under warming conditions is expected to increase tree growth rates. However, there is evidence of an increasing sensitivity of the boreal forest to drought stress. To assess the influence of temperature and precipitation on the growth of black spruce (Picea mariana), we investigated long-term series of wood anatomical traits on 20 trees from four sites along 600 km, the latitudinal range of the closed boreal forest in Quebec, Canada. We correlated the anatomical traits resolved at intraring level with daily temperature, vapor pressure deficit (VPD), and precipitation during the 1943-2010 period. Tree-ring width, number of cells per ring and cell wall thickness were positively affected by spring and summer daily mean and maximum temperature at the northern sites. These results agree with the well-known positive effect of high temperatures on tree ring formation at high latitudes. However, we captured, for the first time in this region, the latent impact of water availability on xylem traits. Indeed, in all the four sites, cell lumen area showed positive correlations with daily precipitation (mostly at low latitude), and/or negative correlations with daily mean and maximum temperature and VPD (mostly at high latitude). We inferred that drought, due to high temperatures, low precipitations, or both, negatively affects cell enlargement across the closed boreal forest, including the northernmost sites. The production of tracheids with narrower lumen, potentially more resistant to cavitation, could increase xylem hydraulic safety under a warmer and drier climate. However, this would result in lower xylem conductivity, with consequent long-term hydraulic deterioration, growth decline, and possibly lead to tree dieback, as observed in other forest ecosystems at lower latitudes.


Subject(s)
Picea , Canada , Ecosystem , Quebec , Taiga , Trees , Water , Wood , Xylem
16.
Front Plant Sci ; 10: 932, 2019.
Article in English | MEDLINE | ID: mdl-31379909

ABSTRACT

Succession is generally well described above-ground in the boreal forest, and several studies have demonstrated the role of interspecific facilitation in tree species establishment. However, the role of mycorrhizal communities for tree establishment and interspecific facilitation, has been little explored. At the ecotone between the mixed boreal forest, dominated by balsam fir and hardwood species, and the boreal forest, dominated by black spruce, several stands of trembling aspen can be found, surrounded by black spruce forest. Regeneration of balsam fir seems to have increased in the recent decades within the boreal forest, and it seems better adapted to grow in trembling aspen stands than in black spruce stands, even when located in similar abiotic conditions. As black spruce stands are also covered by ericaceous shrubs, we investigated if differences in soil fungal communities and ericaceous shrubs abundance could explain the differences observed in balsam fir growth and nutrition. We conducted a study centered on individual saplings to link growth and foliar nutrient concentrations to local vegetation cover, mycorrhization rate, and mycorrhizal communities associated with balsam fir roots. We found that foliar nutrient concentrations and ramification indices (colonization by mycorrhiza per length of root) were greater in trembling aspen stands and were positively correlated to apical and lateral growth of balsam fir saplings. In black spruce stands, the presence of ericaceous shrubs near balsam fir saplings affected ectomycorrhizal communities associated with tree roots which in turn negatively correlated with N foliar concentrations. Our results reveal that fungal communities observed under aspen are drivers of balsam fir early growth and nutrition in boreal forest stands and may facilitate ecotone migration in a context of climate change.

17.
Ann Bot ; 123(7): 1257-1265, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30873532

ABSTRACT

BACKGROUND AND AIMS: Secondary growth is a process related to the formation of new cells that increase in size and wall thickness during xylogenesis. Temporal dynamics of wood formation influence cell traits, in turn affecting cell patterns across the tree ring. We verified the hypothesis that cell diameter and cell wall thickness are positively correlated with the duration of their differentiation phases. METHODS: Histological sections were produced by microcores to assess the periods of cell differentiation in black spruce [Picea mariana (Mill.) B.S.P.]. Samples were collected weekly between 2002 and 2016 from a total of 50 trees in five sites along a latitudinal gradient in Quebec (Canada). The intra-annual temporal dynamics of cell differentiation were estimated at a daily scale, and the relationships between cell traits and duration of differentiation were fitted using a modified von Bertalanffy growth equation. KEY RESULTS: At all sites, larger cell diameters and cell wall thicknesses were observed in cells that experienced a longer period of differentiation. The relationship was a non-linear, decreasing trend that occasionally resulted in a clear asymptote. Overall, secondary wall deposition lasted longer than cell enlargement. Earlywood cells underwent an enlargement phase that lasted for 12 d on average, while secondary wall thickness lasted 15 d. Enlargement in latewood cells averaged 7 d and secondary wall deposition occurred over an average of 27 d. CONCLUSIONS: Cell size across the tree ring is closely connected to the temporal dynamics of cell formation. Similar relationships were observed among the five study sites, indicating shared xylem formation dynamics across the entire latitudinal distribution of the species.The duration of cell differentiation is a key factor involved in cell growth and wall thickening of xylem, thereby determining the spatial variation of cell traits across the tree ring.


Subject(s)
Picea , Quebec , Seasons , Trees , Wood , Xylem
18.
AoB Plants ; 10(4): ply045, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30151094

ABSTRACT

Knowledge of plant architecture allows retrospective study of plant development, hence provides powerful tools, through modelling and simulation, to link this development with environmental constraints, and then predict its response to global change. The present study aims to determine some of the main endogenous and exogenous variables driving the architectural development of three North American conifers. We measured architectural traits retrospectively on the trunk, branches and twigs of whole tree crowns for each species: annual shoot length (ASL), needle length, branching patterns and reproduction organs (male and female). We fitted a partial least square (PLS) regression to explain each architectural trait with respect to topological, ontogenic and climatic variables. Results showed a significant weight of these three groups of variables for previous and current year, corresponding, respectively, to organogenesis and elongation. Topological and ontogenic variables had the greatest weight in models. Particularly, all architectural traits were strongly correlated with ASL. We highlighted a negative architectural response of two species to higher than average temperatures, whereas the third one took advantage of these higher temperatures to some degree. Tree architectural development weekly but significantly improved with higher precipitation. Our study underlines the strong weight of topology and ontogeny in tree growth patterns at twig and branch scales. The correlation between ASL and other tree architectural traits should be integrated into architectural development models. Climate variables are secondary in importance at the twig scale. However, interannual climate variations influence all axis categories and branching orders and therefore significantly impact crown development as a whole. This latter impact may increase with climate change, especially as climate affects architectural traits over at least 2 years, through organogenesis and elongation.

19.
Front Plant Sci ; 9: 1061, 2018.
Article in English | MEDLINE | ID: mdl-30087687

ABSTRACT

In Canada, new forestry practices involving the natural dynamics of tree growth and regeneration are proposed for integrating forest management with biodiversity. In particular, the current spruce budworm [Choristoneura fumiferana (Clemens)] outbreak in northeastern North America is forcing natural resource managers to clarify the potential interactions between natural disturbances and commercial thinning. The aim of this study was to investigate if the spruce budworm outbreak of the 1970s affected the responses of black spruce [Picea mariana (Mill.) B.S.P.] to a subsequent thinning. Stem growth was reconstructed by measuring and cross-dating chronologies of tree-ring width of 1290 adult trees from 34 control and thinned stands within an area of 11,000 km2 in the boreal forest of the Saguenay-Lac-Saint-Jean region (QC, Canada). The treatment consisted of a low thinning performed during 1995-1999 that removed 25-35% of the basal area. Segmented models were applied to the tree-ring chronologies to define the growth pattern during the outbreak and thinning periods within a time window of 8 years, representing the average duration of the effects of defoliation on growth. Trees showed abrupt growth decreases during the outbreak, with the tree-ring index showing minimum values in 1977-1979. The tree-ring index had a flat trend before thinning, while it increased for 6-10 years after thinning. The growth pattern during the outbreak period was characterized by a reduction, mainly in trees with larger tree rings, while slow-growing trees showed less sensitivity to the disturbance. Thinning produced a significant increase in tree growth. No relationship was found between the effects of spruce budworm outbreaks in trees and the changes in growth pattern after thinning. If the timespan between the two disturbances exceeds 7 years, partial cutting can be applied independently of the growth reductions that had occurred during the outbreak. When applied in black spruce stands with high annual radial growth, thinning is expected to optimize the volume growth of the residual trees.

20.
Glob Chang Biol ; 24(9): 4251-4265, 2018 09.
Article in English | MEDLINE | ID: mdl-29697169

ABSTRACT

Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m-2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine-scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale.


Subject(s)
Carbon/analysis , Fires , Picea/chemistry , Pinus/chemistry , Taiga , Global Warming , Northwest Territories
SELECTION OF CITATIONS
SEARCH DETAIL