Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Biotechnol Appl Biochem ; 70(3): 1015-1023, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36441921

ABSTRACT

Lectins are carbohydrate-binding proteins belonging to the Leguminosae family. In this family stand out proteins extracted from species belonging to Diocleinae subtribe, which includes, for example, the seed lectin from Dioclea violacea (DVL) and the jack bean lectin Concanavalin A (ConA). Here, we report the photosynthesis of silver/silver chloride nanoparticles (NPs) assisted by ConA and DVL. The syntheses were simple processes using a green-chemistry approach. Under electron microscopy, NPs heterogeneous in size, nearly spherical and covered by a thin lectin corona, were observed. Both NPs assisted by lectins were capable to cause strong rabbit erythrocytes agglutination with the same titers of hemagglutinating activities. These results indicate that both lectins maintained their biological activities even after association with the NPs and therefore are able to interact with biological membrane carbohydrates. However, for rabbit erythrocytes treated with proteolytic enzymes were observed different titers of hemagglutinating activities, suggesting differences in the spatial arrangement of the lectins on the surface of the NPs. This study provides evidences that these hybrid lectin-coated silver/silver chloride NPs can be used for selective recognition and interaction with membrane carbohydrates and others biotechnological applications.


Subject(s)
Lectins , Plant Lectins , Animals , Rabbits , Lectins/chemistry , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/metabolism , Silver/pharmacology , Carbohydrates/chemistry , Photosynthesis
2.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36422571

ABSTRACT

Staphylococcus aureus is commonly found in wound infections where this pathogen impairs skin repair. The lectin isolated from leaves of Schinus terebinthifolius (named SteLL) has antimicrobial and antivirulence action against S. aureus. This study evaluated the effects of topical administration of SteLL on mice wounds infected by S. aureus. Seventy-two C57/BL6 mice (6−8 weeks old) were allocated into four groups: (i) uninfected wounds; (ii) infected wounds, (iii) infected wounds treated with 32 µg/mL SteLL solution; (iv) infected wounds treated with 64 µg/mL SteLL solution. The excisional wounds (64 mm2) were induced on the dorsum and infected by S. aureus 432170 (4.0 × 106 CFU/wound). The daily treatment started 1-day post-infection (dpi). The topical application of both SteLL concentrations significantly accelerated the healing of S. aureus-infected wounds until the 7th dpi, when compared to untreated infected lesions (reductions of 1.95−4.55-fold and 1.79−2.90-fold for SteLL at 32 µg/mL and 64 µg/mL, respectively). The SteLL-based treatment also amended the severity of wound infection and reduced the bacterial load (12-fold to 72-fold for 32 µg/mL, and 14-fold to 282-fold for 64 µg/mL). SteLL-treated wounds show higher collagen deposition and restoration of skin structure than other groups. The bacterial load and the levels of inflammatory markers (IL-6, MCP-1, TNF-α, and VEGF) were also reduced by both SteLL concentrations. These results corroborate the reported anti-infective properties of SteLL, making this lectin a lead candidate for developing alternative agents for the treatment of S. aureus-infected skin lesions.

3.
Curr Protein Pept Sci ; 23(12): 851-861, 2022.
Article in English | MEDLINE | ID: mdl-36239726

ABSTRACT

The indiscriminate use of antibiotics is associated with the appearance of bacterial resistance. In light of this, plant-based products treating infections are considered potential alternatives. Lectins are a group of proteins widely distributed in nature, capable of reversibly binding carbohydrates. Lectins can bind to the surface of pathogens and cause damage to their structure, thus preventing host infection. The antimicrobial activity of plant lectins results from their interaction with carbohydrates present in the bacterial cell wall and fungal membrane. The data about lectins as modulating agents of antibiotic activity, potentiates the effect of antibiotics without triggering microbial resistance. In addition, lectins play an essential role in the defense against fungi, reducing their infectivity and pathogenicity. Little is known about the antiviral activity of plant lectins. However, their effectiveness against retroviruses and parainfluenza is reported in the literature. Some authors still consider mannose/ glucose/N-Acetylglucosamine binding lectins as potent antiviral agents against coronavirus, suggesting that these lectins may have inhibitory activity against SARS-CoV-2. Thus, it was found that plant lectins are an alternative for producing new antimicrobial drugs, but further studies still need to decipher some mechanisms of action.


Subject(s)
Anti-Infective Agents , COVID-19 , Humans , Plant Lectins/pharmacology , SARS-CoV-2 , Lectins/pharmacology , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Carbohydrates , Anti-Bacterial Agents
4.
Nat Prod Res ; 36(18): 4740-4745, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34812686

ABSTRACT

This study aims to evaluate the wound healing potential of lectin isolated from the seeds of Centrolobium microchaete (Mart. ex Benth) (CML) on cutaneous wounds in mice. CML did not show cytotoxicity on murine dermal fibroblasts (L929 cell line). The wounds treated with CML (200 µg/mL) showed a decrease in area within 12 days post-operative (P.O.) when compared to control. On 3rd and 7th day P.O., the CML-treated group exhibited fibroblast proliferation and neovascularization. On 12th day P.O., complete restructuring of the epithelial layer and connective tissue was observed in the CML-treated group, whereas control groups exhibited incomplete reepithelialization. CML treatment enhanced the wound closure via the wound contraction process, resulting in the restructuring of the skin layers on 12th day P.O. In conclusion, CML induced a fast and efficient wound healing, suggesting that it can be used as a promising therapeutic tool to heal acute wounds.


Subject(s)
Fabaceae , Lectins , Animals , Lectins/pharmacology , Mice , Seeds , Skin , Wound Healing
5.
Rev. cuba. med. trop ; 73(3)dic. 2021.
Article in English | LILACS-Express | LILACS | ID: biblio-1408877

ABSTRACT

RESUMEN Introducción: La situación actual de la COVID-19 es un gran problema para la población humana. En la actualidad, no hay medicamentos curativos disponibles en el mercado. Los investigadores están haciendo todo lo posible para producir fármacos con que luchar contra la enfermedad. Se están considerando varios esfuerzos basados en diferentes orientaciones del conocimiento científico y en las tecnologías para el tratamiento de la enfermedad. Desafortunadamente, ninguno de estos medicamentos funciona absolutamente contra la corriente pandémica. Por lo tanto, las moléculas bioactivas de plantas, animales y microorganismos podrían ser una mejor opción para tratar la COVID-19. Objetivo: Revisar la literatura sobre especies de la flora del Perú utilizadas en el tratamiento de enfermedades respiratorias y destacar las plantas con posible producción de metabolitos secundarios y lectinas vegetales potencialmente útiles como alternativa frente a la COVID-19. Métodos: Se revisaron artículos de literatura científica relacionados con el uso de la medicina tradicional en Perú, China e India para el tratamiento de enfermedades respiratorias, así como la información sobre lectinas vegetales y metabolitos secundarios con potencial utilidad contra la COVID-19. Resultados: Se presenta una amplia relación de géneros y especies de la flora del Perú con gran potencial contra la COVID-19. La mayoría de estas especies pertenecen a las familias Asteraceae, Loranthaceae, Piperaceae, Viscaceae y Zingiberaceae. Numerosas especies son endémicas del Perú. Conclusiones: La flora del Perú tiene más de 22 000 especies de plantas. Muchas de estas especies se utilizan tradicionalmente en el tratamiento de enfermedades respiratorias y pueden ser potencialmente útiles en el tratamiento de la COVID-19.


ABSTRACT Introduction: The current situation of COVID-19 is a big issue for the human population. At present, no healing drug is available in the market. Researchers are doing their best to produce drugs to fight the disease. Various efforts are being considered based on different directions of scientific knowledge and technologies for the treatment of the disease. Unfortunately, none of these drugs works absolutely against the pandemic. Therefore, bioactive molecules from plants, animals and microorganisms could be a better option to treat COVID-19. Objective: Review the literature about species of the flora of Peru used for the treatment of respiratory diseases and highlight the plants with potential in the production of secondary metabolites and plant lectins as an alternative against COVID-19. Methods: A review was conducted of scientific articles related to the use of traditional medicine in Peru, China, and India for the treatment of respiratory diseases, as well as information about plant lectins and secondary metabolites potentially useful against COVID-19. Results: A long list is presented of genera and species of the flora of Peru with great potential against COVID-19. Most of these species belong to the Asteraceae, Loranthaceae, Piperaceae, Viscaceae and Zingiberaceae families. Numerous species are endemic to Peru. Conclusions: The flora of Peru has more than 22 000 plant species. Many of these species are traditionally used in the treatment of respiratory diseases and are potentially useful for the treatment of COVID-19.

6.
Int Immunopharmacol ; 100: 108094, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34508942

ABSTRACT

This work evaluated the immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by S. aureus. Swiss mice were divided into 3 groups (n = 12/group): non-inoculated (Control group); inoculated with S. aureus (Sa group); inoculated with S. aureus and treated with Cramoll (Sa + Cramoll group). In each animal, one lesion (64 mm2) was induced on the back and contaminated with S. aureus (~4.0 × 106 CFU/wound). The treatment with Cramoll (5 µg/animal/day) started 1-day post-infection (dpi) and extended for 10 days. Clinical parameters (wound size, inflammatory aspects, etc.) were daily recorded; while cytokines levels, bacterial load and histological aspects were determined in the cutaneous tissue at 4th dpi or 11th dpi. The mice infected with S. aureus exhibited a delay in wound contraction and the highest inflammatory scores. These effects were impaired by the treatment with Cramoll which reduced the release of key inflammatory mediators (TNF-α, NO, VEGF) and the bacterial load at wound tissue. Histological evaluations showed a restauration of skin structures in the animals treated with Cramoll. Taken together, these results provide more insights about the healing and immunomodulatory properties of Cramoll and suggest this lectin as a lead compound for treatment of wound infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fabaceae , Immunomodulating Agents/pharmacology , Plant Lectins/pharmacology , Staphylococcal Infections/prevention & control , Staphylococcus aureus/drug effects , Wound Infection/prevention & control , Animals , Anti-Bacterial Agents/isolation & purification , Bacterial Load , Disease Models, Animal , Fabaceae/chemistry , Host-Pathogen Interactions , Immunomodulating Agents/isolation & purification , Mice , Nitric Oxide/metabolism , Plant Lectins/isolation & purification , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/growth & development , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/drug effects , Wound Infection/immunology , Wound Infection/metabolism , Wound Infection/microbiology
7.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21200170, 2021.
Article in English | LILACS | ID: biblio-1249201

ABSTRACT

Abstract Lectins were discovered first in plants and later in other living things, and nowadays it is known that they are present in almost all many life forms. These proteins can bind to specific carbohydrates, which make them perform a number of biological activities and can be used as tools in the study of glycoconjugate structures present on the cell surface, being effective in medical research. Plant lectins, leguminosae lectins particularly, are among the most studied plant proteins. They are very versatile molecules, which show several interesting biological properties. Thus, the present paper reviewed the advances about the leguminosae lectins biological properties studies in the last ten years, taking into account their possible applications in the fields of Clinical Microbiology, Pharmacy and Cancerology through a search in the electronic databases, providing opportunity to exchange information about the theme. Leguminosae lectins can neutralize pathogenic organisms, be they viruses, prokaryotes and eukaryotes, in addition carcinogenic cells, besides decreasing oxidative stress, conditions which increases the possibility of alternative substances for the design of new drugs to be used in current therapeutic, expanding the possibilities of diseases cure.


Subject(s)
Biological Products , Plant Lectins/pharmacology , Education, Pharmacy , Medical Oncology/education , Microbiology/education
9.
Molecules ; 25(5)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110921

ABSTRACT

Lectins are bioactive proteins with the ability to recognize cell membrane carbohydrates in a specific way. Diverse plant lectins have shown diagnostic and therapeutic potential against cancer, and their cytotoxicity against transformed cells is mediated through the induction of apoptosis. Previous works have determined the cytotoxic activity of a Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) and its anti-tumorigenic effect on colon cancer. In this work, lectins from the TBLF were additionally purified by ionic-exchange chromatography. Two peaks with agglutination activity were obtained: one of them was named TBL-IE2 and showed a single protein band in two-dimensional electrophoresis; this one was thus selected for coupling to quantum dot (QD) nanoparticles by microfluidics (TBL-IE2-QD). The microfluidic method led to low sample usage, and resulted in homogeneous complexes, whose visualization was achieved using multiphoton and transmission electron microscopy. The average particle size (380 nm) and the average zeta potential (-18.51 mV) were determined. The cytotoxicity of the TBL-IE2 and TBL-IE2-QD was assayed on HT-29 colon cancer cells, showing no differences between them (p ≤ 0.05), where the LC50 values were 1.0 × 10-3 and 1.7 × 10-3 mg/mL, respectively. The microfluidic technique allowed control of the coupling between the QD and the protein, substantially improving the labelling process, providing a rapid and efficient method that enabled the traceability of lectins. Future studies will focus on the potential use of the QD-labelled lectin to recognize tumor tissues.


Subject(s)
Microfluidics , Phaseolus/metabolism , Plant Lectins/metabolism , Quantum Dots/metabolism , Staining and Labeling , Cell Death/drug effects , Fluorescence , HT29 Cells , Humans , Plant Lectins/isolation & purification , Plant Lectins/pharmacology
10.
Curr Protein Pept Sci ; 21(3): 284-294, 2020.
Article in English | MEDLINE | ID: mdl-31490746

ABSTRACT

Lectins are proteins characterized by their ability to specifically bind different carbohydrate motifs. This feature is associated with their endogenous biological function as well as with multiple applications. Plants are important natural sources of these proteins; however, only a reduced group was shown to display antifungal activity. Although it is hypothesized that the target of lectins is the fungal cell wall, the mechanism through which they exert the antifungal action is poorly understood. This topic is relevant to improve treatment against pathogens of importance for human health. In this context, mechanisms pointing to essential attributes for virulence instead of the viability of the pathogen emerge as a promising approach. This review provides the current knowledge on the action mechanism of plant antifungal lectins and their putative use for the development of novel active principles against fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Fungi/drug effects , Mycoses/drug therapy , Plant Lectins/pharmacology , Fungi/pathogenicity , Humans , Virulence/drug effects
11.
Pest Manag Sci ; 74(7): 1593-1599, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29297969

ABSTRACT

BACKGROUND: Lectins, carbohydrate-binding proteins, from the bark (MuBL) and leaf (MuLL) of Myracrodruon urundeuva are termiticidal agents against Nasutitermes corniger workers and have been shown to induce oxidative stress and cell death in the midgut of these insects. In this study, we investigated the binding targets of MuBL and MuLL in the gut of N. corniger workers by determining the effects of these lectins on the activity of digestive enzymes. In addition, we used mass spectrometry to identify peptides from gut proteins that adsorbed to MuBL-Sepharose and MuLL-Sepharose columns. RESULTS: Exoglucanase activity was neutralized in the presence of MuBL and stimulated by MuLL. α-l-Arabinofuranosidase activity was not affected by MuBL but was inhibited by MuLL. Both lectins stimulated α-amylase activity and inhibited protease and trypsin-like activities. Peptides with homology to apolipophorin, trypsin-like enzyme, and ABC transporter substrate-binding protein were detected from proteins that adsorbed to MuBL-Sepharose, while peptides from proteins that bound to MuLL-Sepharose shared homology with apolipophorin. CONCLUSION: This study revealed that digestive enzymes and transport proteins found in worker guts can be recognized by MuBL and MuLL. Thus, the mechanism of their termiticidal activity may involve changes in the digestion and absorption of nutrients. © 2018 Society of Chemical Industry.


Subject(s)
Anacardiaceae/chemistry , Insecticides/metabolism , Isoptera/drug effects , Plant Lectins/metabolism , Animals , Digestive System/drug effects , Digestive System/enzymology , Isoptera/enzymology , Plant Bark/chemistry , Plant Leaves/chemistry , Plant Lectins/administration & dosage
12.
Int J Mol Sci ; 18(7)2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28671623

ABSTRACT

Digestive system cancers-those of the esophagus, stomach, small intestine, colon-rectum, liver, and pancreas-are highly related to genetics and lifestyle. Most are considered highly mortal due to the frequency of late diagnosis, usually in advanced stages, caused by the absence of symptoms or masked by other pathologies. Different tools are being investigated in the search of a more precise diagnosis and treatment. Plant lectins have been studied because of their ability to recognize and bind to carbohydrates, exerting a variety of biological activities on animal cells, including anticancer activities. The present report integrates existing information on the activity of plant lectins on various types of digestive system cancers, and surveys the current state of research into their properties for diagnosis and selective treatment.


Subject(s)
Digestive System Neoplasms/drug therapy , Plant Lectins/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Biomedical Technology , Humans
13.
Data Brief ; 7: 1584-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27222857

ABSTRACT

We reported in article da Silva et al. (2016) [2] that ArtinM induces the IL-17 production through interaction with CD4(+) T cells and stimulation of IL-23 and IL-1. Besides ArtinM, other plant lectins (PLs) induce IL-17 production by murine spleen cells. The IL-17 production induced by PLs was evaluated regarding the involvement of IL-23, IL-6, Th1-, and Th2-cytokines. Furthermore, the effect exerted TLR2, TLR4, and CD14 on the PLs׳ performance in the induction of IL-17 was examined. The current data were compared to the known ArtinM ability to induce Th17 immunity.

14.
Mem. Inst. Oswaldo Cruz ; 86(supl.2): 211-218, 1991. tab
Article in English | LILACS | ID: lil-623973

ABSTRACT

Lectins, carbohydrate-binding proteins of non-immune origin, that agglutinate cells or precipitate polysaccharides and glycoconjugates, are well distributed in nature, mainly in the Plant Kingdom. The great majority of the plante lectins are present in seed cotyledons where they are found in the cytoplasm or int he protein bodies, although they have also been found in roots, stems and leaves. Due to their peculiar properties, the lectins are used as a tool both for analytical and preparative purposes in biochemistry, cellular biology, immunology and related areas. In agriculture and medicine the use of lectins greatly improved in the last few years. The lextins, with few exceptions, are glycoproteins, need divalent cations to display full activity and are, in general, oligomers with variable molecular weight. Although the studies on lectins have completed a century, their role in nature is yet ynknown . Several hypotheses on their physiological functions have been suggested. Thus, lectins could play important roles in defense against pathogens, plant-microorganism symbiosis, cell organization, embryo morphogenesis, phagocytosis, cell wall elongation, pollen recognition and as reserve proteins. A brief review on the general properties and roles of the lectins is given.


Subject(s)
Humans , Animals , Plant Proteins/pharmacology , Plants/chemistry , Lectins/isolation & purification , Lectins/chemistry , Dietary Proteins/pharmacology , Glycoproteins/pharmacology , Carbohydrate Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL