Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Front Aging Neurosci ; 16: 1451766, 2024.
Article in English | MEDLINE | ID: mdl-39385832

ABSTRACT

Introduction: Alzheimer's disease (AD) is the leading cause of dementia, and currently, no effective treatments are available to reverse or halt its progression in clinical practice. Although a plethora of studies have highlighted the benefits of physical exercise in combating AD, elder individuals often have limited exercise capacity. Therefore, mild physical exercise and nutritional interventions represent potential strategies for preventing and mitigating neurodegenerative diseases. Our research, along with other studies, have demonstrated that platycodin D (PD) or its metabolite, platycodigenin, derived from the medicinal plant Platycodon grandiflorus, exerts neuroprotective effects against amyloid ß (Aß)-induced neuroinflammation. However, the combined effects of PD and physical exercise on alleviating AD have yet to be explored. The current study aimed to investigate whether combined therapy could synergistically ameliorate memory deficits and AD pathology in 5 × FAD mice. Methods: Five-month-old 5 × FAD mice were randomly assigned to four groups, and received either PD (5 mg/kg/day, p.o.), voluntary running, or a combination of both for 47 days. Nest building test, locomotion test, and Morris water maze test were used to evaluate the cognitive function. Immunohistochemical and ELISA analysis was performed to determine Aß build-up, microglia and astrocytes hyperactivation, and survival neurons in the hippocampus and perirhinal cortex. Real-time quantitative PCR analysis was used to assess the polarization of microglia and astrocytes. HPLC analysis was performed to measure monoamine neurotransmitters in the hippocampus. Results and discussion: The combination of PD and voluntary running synergistically restored nest-building behavior, alleviated recognition and spatial memory deficits, and showed superior effects compared to monotherapy. In addition, the PD and voluntary running combination reduced Aß build-up, decreased hyperactivation of microglia and astrocytes in the hippocampus and perirhinal cortex, promoted the polarization of inflammatory M1 microglia and reactive astrocytes toward beneficial phenotypes, and lowered systemic circulating pro-inflammatory cytokines while increasing anti-inflammatory cytokines in 5 × FAD mice. Furthermore, combined therapy effectively protected neurons and increased levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of 5 × FAD mice. In conclusion, the combination of PD and voluntary running holds great potential as a treatment for AD, offering promise for delaying onset or progression of AD.

2.
Free Radic Biol Med ; 224: 707-722, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321891

ABSTRACT

Recently, the potential association between polycystic ovary syndrome (PCOS) development and progression and ferroptosis has garnered attention. Increasing evidence suggests that targeting ferroptosis may be an effective strategy for treating PCOS. First, we observed that the expression of the ferroptosis regulatory molecules SLC7A11, GPX4, and FTH1 was decreased in the granulosa cells (GCs) of patients with PCOS and ovarian tissues of rats with PCOS; in contrast, TFR1 expression was increased. This suggests that GC ferroptosis is involved in PCOS pathogenesis. Furthermore, bioinformatics analysis of GC datasets from patients with PCOS and PCOS clinical samples and animal model analysis revealed CD44 as a key molecule regulating ferroptosis in PCOS, which was down-regulated in GCs of PCOS patients and rats. Subsequently, molecular docking was performed to screen existing natural compounds for inhibiting ferroptosis. Dynamic simulation and cellular thermal shift assay identified platycodin D as a natural plant extract for inhibiting ferroptosis by targeting CD44 in GCs. Subsequently, a series of functional experiments revealed that platycodin D ameliorated ovarian damage in rats with PCOS. This was primarily owing to the protective effects achieved by promoting glutathione production, attenuating lipid accumulation and lipid peroxidation in GCs, inhibiting iron overload, and scavenging reactive oxygen species. In addition, western blotting and immunofluorescence staining revealed that platycodin D upregulated the expression of CD44 and SLC7A11 in GCs. Furthermore, by knocking down CD44 and SLC7A11 in vivo and in vitro, respectively, the ameliorative effect of platycodin D on ferroptosis in the GCs of rats with PCOS was reversed. Collectively, these findings suggest that platycodin D attenuates ferroptosis in GCs by activating CD44/SLC7A11 axis, thereby upregulating system Xc-. In conclusion, platycodin D can attenuate ferroptosis in GCs by activating CD44, potentially ameliorating ovarian damage in PCOS.

3.
Integr Cancer Ther ; 23: 15347354241263041, 2024.
Article in English | MEDLINE | ID: mdl-39189615

ABSTRACT

Lung cancer is the most prevalent and lethal malignant tumor in China, primarily categorized into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for more than 80% of all lung cancer cases, with current treatments primarily consisting of surgery, chemotherapy, and targeted therapy. However, these treatments often come with various adverse effects and drug resistance issues, highlighting the urgent need for new NSCLC therapies. Traditional Chinese medicine serves as a natural treasury of medicinal compounds and an important avenue for discovering novel active compounds. Platycodin D (PD) is a triterpenoid saponin isolated from the roots of Platycodon, possessing various pharmacological properties. Nevertheless, the exact mechanism of PD's anti-lung cancer activity remains unclear. In this study, 3 lung cancer cell models, A549, NCI-H1299, and PC-9, were employed. After intervention with Platycodin-D, tumor cell proliferation and migration were assessed. Cell migration ability was assessed through transwell assays, while transcriptomics was employed to explore the mechanism of PD's anticancer activity. Bioinformatic analysis revealed significant enrichment of apoptosis and the TGFß pathway following PD intervention, as shown in gene expression heatmaps, where genes associated with cancer were significantly downregulated by PD intervention. Subsequently, we used immunofluorescent labeling of KI-67 to evaluate cell proliferation, flow cytometry to assess apoptosis, and Western blot to detect protein expression of TGFß and P-SMAD3. Immunofluorescence was also employed to investigate E-cadherin, vimentin, and N-cadherin. Finally, molecular docking and dynamic simulations were utilized to study the interaction between PD and TGFß proteins. The results of this study indicate that PD exhibits robust anti-lung cancer pharmacological activity, with its primary target being TGFß. PD may serve as a potential TGFß inhibitor and a candidate drug for NSCLC treatment.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Lung Neoplasms , Saponins , Transforming Growth Factor beta , Triterpenes , Humans , Saponins/pharmacology , Lung Neoplasms/drug therapy , Cell Proliferation/drug effects , Cell Line, Tumor , Triterpenes/pharmacology , Transforming Growth Factor beta/metabolism , Cell Movement/drug effects , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Depsides/pharmacology , Molecular Docking Simulation , A549 Cells , Signal Transduction/drug effects , Transcriptome/drug effects , Platycodon/chemistry
4.
Front Pharmacol ; 15: 1412453, 2024.
Article in English | MEDLINE | ID: mdl-39108759

ABSTRACT

Background: Platycodin D (PD) has been reported to treat metabolic diseases, including non-alcoholic fatty liver disease. In addition, platycodin D has been reported to activate intestinal 5'AMP-activated protein kinase (AMPK) phosphorylation levels, thereby reducing lipid absorption. Therefore, the aim of this study is to explore whether PD activation of intestinal AMPK and reduced lipid absorption can improve non-alcoholic fatty liver disease. Methods: Clean-grade male C57/BL mice were fed a high-fat diet (HFD) (containing 60% calories) for 16 weeks, and oral PD (10 mg/kg/day) was administered at the same time. The liver and intestines were the collected, and the intestines were tested. The expressions of lipid absorption genes (CD36, NPC1L1, and ApoB), the serum total triglyceride (TG) and total cholesterol (TC) levels in the intestines and livers, the fecal free fatty acid (FFA) levels, and the expression of AMPK phosphorylated proteins in the intestines were examined using Western blot analyses. The lipid distribution in the livers, intestines, and fat was detected using Oil Red O and hematoxylin and eosin (H&E) staining. A colon cancer cell line (Caco2) was used to confirm the effect of PD on the cellular lipid uptake in vitro. In addition, serum inflammatory factors and liver enzymes were measured to clarify the impact of PD on the circulation of metabolic syndrome. Leptin-deficient mice (OB) were then used to further explore the improvement of PD on body weight and blood lipids. Results: PD had a very significant therapeutic or preventive effect on metabolic syndrome and fatty liver induced by a high-fat diet. PD improved body weight, insulin sensitivity, and glucose tolerance in mice fed a high-fat diet and also prevented non-alcoholic fatty liver disease, reduced blood lipid levels, and increased fecal lipid excretion. In addition, PD reduced lipid absorption by activating the intestinal AMPK protein, which may have involved the inhibition of the gene expression levels of intestinal lipid absorption genes (CD36, NPC1L1, and ApoB). The combined effect of these factors improved hepatic lipid accumulation and lipid accumulation in adipose tissue. It was further found that PD also improved the body weights and blood lipid levels of leptin-deficient mice (OB) mice. Conclusion: PD had a very strong therapeutic effect on mice under a high-fat diet. PD reduced high-fat diet-induced obesity and non-alcoholic fatty liver disease by inhibiting intestinal fat absorption.

5.
Int Immunopharmacol ; 139: 112782, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39074416

ABSTRACT

Platycodin D (PLD), a major bioactive component of triterpene saponins found in Platycodon grandiflora, is renowned for its anti-inflammatory and antioxidant properties. This study aims to explore the protective effects and regulatory mechanisms of PLD in an LPS-induced inflammation injury model of BEAS-2B cells. Initially, PLD was identified from Platycodon grandiflora extracts utilizing UPLC-Q-TOF-MS/MS technology. The effects of PLD on the viability, morphology, ROS levels, and inflammatory factors of LPS-induced BEAS-2B cells were then investigated. The results showed that PLD significantly alleviated LPS-induced oxidative stress and inflammatory injury. Further analysis revealed that PLD positively influenced apoptosis levels, mitochondrial morphology, and related gene expression, indicating its potential to mitigate LPS-induced apoptosis and alleviate mitochondrial dysfunction. Using molecular docking technology, we predicted the binding sites of PLD with mitochondrial autophagy protein. Gene expression levels of autophagy-related proteins were measured to determine the impact of PLD on mitochondrial autophagy. Additionally, the study examined whether the mitochondrial autophagy agonists rapamycin (RAPA) could modulate the upregulation of inflammasome-related factors NLRP3 and Caspase-1 in LPS-induced BEAS-2B cells. This was done to evaluate the regulator mechanisms of PLD in pulmonary inflammatory injury. Our findings suggest that PLD's mechanism of action involves the regulation of mitochondrial autophagy, which in turn modulates inflammatory responses.


Subject(s)
Anti-Inflammatory Agents , Apoptosis , Autophagy , Lipopolysaccharides , Platycodon , Saponins , Triterpenes , Humans , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Platycodon/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Line , Apoptosis/drug effects , Autophagy/drug effects , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Docking Simulation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation/drug therapy , Inflammation/chemically induced , Reactive Oxygen Species/metabolism
6.
J Agric Food Chem ; 72(18): 10339-10354, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38682702

ABSTRACT

The current study aimed to assess the effectiveness of pharmacological intervention with Platycodin D (PD), a critically active compound isolated from the roots of Platycodon grandiflorum, in mitigating cardiotoxicity in a murine model of type 2 diabetes-induced cardiac injury and in H9c2 cells in vitro. Following oral administration for 4 weeks, PD (2.5 mg/kg) significantly suppressed the elevation of fasting blood glucose (FBG) levels, improved dyslipidemia, and effectively inhibited the rise of the cardiac injury markers creatine kinase isoenzyme MB (CK-MB) and cardiac troponin T (cTnT). PD treatment could ameliorate energy metabolism disorders induced by impaired glucose uptake by activating AMPK protein expression in the DCM mouse model, thereby promoting the GLUT4 transporter and further activating autophagy-related proteins. Furthermore, in vitro experiments demonstrated that PD exerted a concentration-dependent increase in cell viability while also inhibiting palmitic acid and glucose (HG-PA)-stimulated H9c2 cytotoxicity and activating AMPK protein expression. Notably, the AMPK activator AICAR (1 mM) was observed to upregulate the expression of AMPK in H9c2 cells after high-glucose and -fat exposure. Meanwhile, we used AMPK inhibitor Compound C (20 µM) to investigate the effect of PD activation of AMPK on cells. In addition, the molecular docking approach was employed to dock PD with AMPK, revealing a binding energy of -8.2 kcal/mol and indicating a tight interaction between the components and the target. PD could reduce the expression of autophagy-related protein p62, reduce the accumulation of autophagy products, promote the flow of autophagy, and improve myocardial cell injury. In conclusion, it has been demonstrated that PD effectively inhibits cardiac injury-induced type 2 diabetes in mice and enhances energy metabolism in HG-PA-stimulated H9c2 cells by activating the AMPK signaling pathway. These findings collectively unveil the potential cardioprotective effects of PD via modulation of the AMPK signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Type 2 , Saponins , Signal Transduction , Triterpenes , Animals , Humans , Male , Mice , Rats , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Cell Line , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Platycodon/chemistry , Saponins/chemistry , Saponins/pharmacology , Signal Transduction/drug effects , Triterpenes/chemistry , Triterpenes/pharmacology
7.
J Leukoc Biol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518381

ABSTRACT

Influenza virus infection is a worldwide challenge that causes heavy burdens on public health. The mortality rate of severe influenza patients is often associated with hyperactive immunological abnormalities characterized by hypercytokinemia. Due to the continuous mutations and the occurrence of drug-resistant influenza virus strains, the development of host-directed immunoregulatory drugs is urgently required. Platycodon grandiflorum is among the top 10 herbs of traditional Chinese medicine used to treat pulmonary diseases. As one of the major terpenoid saponins extracted from Platycodon grandiflorum, Platycodin D (PD) has been reported to play several roles, including anti-inflammation, analgesia, anti-cancer, hepatoprotection, and immunoregulation. However, the therapeutic roles of PD to treat influenza virus infection remains unknown. Here, we show that PD can protect the body weight loss in severely infected influenza mice, alleviate lung damage, and thus improve the survival rate. More specifically, PD protects flu mice via decreasing the immune cell infiltration into lungs and downregulating the overactivated inflammatory response. Western blot and immunofluorescence assays exhibited that PD could inhibit the activation of TAK1/IKK/NF-κB and MAPK pathways. Besides that, CETSA, SPR and immunoprecipitation assays indicated that PD binds with TRAF6 to decrease its K63 ubiquitination after R837 stimulation. Additionally, siRNA interference experiments exhibited that PD could inhibit the secretion of IL-1ß and TNF-α in TRAF6-dependent manner. Altogether, our results suggested that PD is a promising drug candidate for treating influenza. Our study also offered a scientific explanation for the commonly used Platycodon grandiflorum in many anti-epidemic classic formulas. Due to its host-directed regulatory role, PD may serve as an adjuvant therapeutic drug in conjunction with other antiviral drugs to treat the flu.

8.
J Agric Food Chem ; 72(22): 12516-12528, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38491972

ABSTRACT

Objectives: The aim of this study was to investigate the ameliorative effect of platycodin D (PD) on cognitive dysfunction in type 2 diabetes mellitus (T2DM) and its potential molecular mechanisms of action in vivo and in vitro. Materials and methods: An animal model of cognitive impairment in T2DM was established using a single intraperitoneal injection of streptozotocin (100 mg/kg) after 8 weeks of feeding a high-fat diet to C57BL/6 mice. In vitro, immunofluorescence staining and Western blot were employed to analyze the effects of PD on glucose-induced neurotoxicity in mouse hippocampal neuronal cells (HT22). Results: PD (2.5 mg/kg) treatment for 4 weeks significantly suppressed the rise in fasting blood glucose in T2DM mice, improved insulin secretion deficiency, and reversed abnormalities in serum triglyceride, cholesterol, low-density lipoprotein, and high-density lipoprotein levels. Meanwhile, PD ameliorated choline dysfunction in T2DM mice and inhibited the production of oxidative stress and apoptosis-related proteins of the caspase family. Notably, PD dose-dependently prevents the loss of mitochondrial membrane potential, promotes phosphorylation of phosphatidylinositol 3 kinase and protein kinase B (Akt) in vitro, activates glycogen synthase kinase 3ß (GSK3ß) expression at the Ser9 site, and inhibits Tau protein hyperphosphorylation. Conclusions: These findings clearly indicated that PD could alleviate the neurological damage caused by T2DM, and the phosphorylation of Akt at Ser473 may be the key to its effect.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Saponins , Signal Transduction , Triterpenes , Animals , Humans , Male , Mice , Blood Glucose/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Saponins/pharmacology , Saponins/administration & dosage , Signal Transduction/drug effects , Triterpenes/pharmacology , Triterpenes/administration & dosage
9.
Cancer Cell Int ; 24(1): 79, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374035

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) cells usually show strong resistance to chemotherapy, which not only reduces the efficacy of chemotherapy but also increases the side effects. Regulation of autophagy plays an important role in tumor treatment. Cell senescence is also an important anti-cancer mechanism, which has become an important target for tumor treatment. Therefore, it is of great clinical significance to find anti-HCC drugs that act through this new mechanism. Platycodin D2 (PD2) is a new saponin compound extracted from the traditional Chinese medicine Platycodon grandiflorum. PURPOSE: Our study aimed to explore the effects of PD2 on HCC and identify the underlying mechanisms. METHODS: First, the CCK8 assay was used to detect the inhibitory effect of PD2 on HCC cells. Then, different pathways of programmed cell death and cell cycle regulators were measured. In addition, we assessed the effects of PD2 on the autophagy and senescence of HCC cells by flow cytometry, immunofluorescence staining, and Western blotting. Finally, we studied the in vivo effect of PD2 on HCC cells by using a mouse tumor-bearing model. RESULTS: Studies have shown that PD2 has a good anti-tumor effect, but the specific molecular mechanism has not been clarified. In this study, we found that PD2 has no obvious toxic effect on normal hepatocytes, but it can significantly inhibit the proliferation of HCC cells, induce mitochondrial dysfunction, enhance autophagy and cell senescence, upregulate NIX and P21, and downregulate CyclinA2. Gene silencing and overexpression indicated that PD2 induced mitophagy in HCC cells through NIX, thereby activating the P21/CyclinA2 pathway and promoting cell senescence. CONCLUSIONS: These results indicate that PD2 induces HCC cell death through autophagy and aging. Our findings provide a new strategy for treating HCC.

10.
J Pharm Biomed Anal ; 242: 116016, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38367521

ABSTRACT

As the main saponin component of Platycodon grandiflorum A.DC, Platycodin D has been reported to have an anti-obesity effect. Due to poor oral absorption, the intestinal microflora usually transforms saponins into potential bioactive substances. In this study, we profiled the metabolic changes of platycodin D by incubating it with intestinal microflora extracted from mice feces subjected to either a standard control diet or a high-fat diet. A UPLC-LTQ-Orbitrap-MS method was used for rapid analysis of the metabolic profile of platycodin D. A total of 10 compounds were identified 9 of which were assessed to be metabolized by intestinal microflora. Dehydroxylation and deglycosylation were the major metabolic process of platycodin D. The metabolic profile of platycodin D biotransformed by intestinal microflora was elucidated based on the metabolite information. Platycodin D and its metabolites had anti-inflammatory effects in LPS-stimulated RAW 264.7 cells. Only platycodin D could alleviate lipid accumulation in FFA-treated HepG2 cells.


Subject(s)
Gastrointestinal Microbiome , Saponins , Triterpenes , Mice , Animals , Humans , Saponins/pharmacology , Saponins/metabolism , Triterpenes/pharmacology , Triterpenes/metabolism , Hep G2 Cells
11.
Biomed Pharmacother ; 172: 116216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295755

ABSTRACT

Platycodin D (PD) is the main component of triterpene saponins found in Platycodi radix. In this study, we observed a decrease in cell viability, an increase in apoptotic bodies, and an increase in the rate of apoptosis. Also, we observed an increase in cleaved PARP and Bax, a decrease in Bcl-2, and p-ERK, and an increase in p-p38 and p-JNK. Furthermore, a change in cell viability and the expression of p-p38, Bax, and Bcl-2 using the p38 inhibitor revealed a decrease in p-p38 and Bax and an increase in Bcl-2 in the inhibitor treatment group. In addition, we observed an increase in vacuole formation through morphological changes and an increase in acidic vesicular organelles (AVOs). We also observed an increase in the expression of beclin 1, LC 3-I, and -II. There was no significant decrease in cell viability in the group treated with 3-MA, but a decrease in cell viability was noted in the group treated with HCQ. HCQ treatment resulted in an increase in Bax and a decrease in Bcl-2. These findings reveal that in HT-29 colon cancer cells, PD induces apoptosis through the MAPK pathway, thereby exerting anticancer effects. Moreover, autophagy caused by PD inhibits apoptosis by protecting the cells.


Subject(s)
Colonic Neoplasms , Saponins , Triterpenes , Humans , bcl-2-Associated X Protein , Saponins/pharmacology , Triterpenes/pharmacology , Apoptosis , Autophagy , Colonic Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 60-69, 2024 Jan 20.
Article in Chinese | MEDLINE | ID: mdl-38293977

ABSTRACT

OBJECTIVE: To assess the effect of platycodin D (PD) for alleviating pulmonary fibrosis in mice and explore the underlying mechanism. METHODS: C57BL/6J mouse models of pulmonary fibrosis induced by bleomycin injection into the airway were treated with daily intragastric administration of 10 mg/kg PD for 28 days. The changes of pulmonary fibrosis and the expression and distribution of transient receptor potential cation channel subfamily C member 6 (TRPC6) were evaluated with immunohistochemistry, HE staining and Sirius Red staining. Western blotting was used to detect α-SMA expression in the lung tissues of the mice. Primary cultures of mouse lung fibroblasts were pretreated with PD (2.5, 5.0, and 10 µmol/L) or larixyl acetate (LA; 10 µmol/L) before exposure to 10 ng/mL transforming growth factor-ß1 (TGF-ß1), and the changes in cell survival rate, expressions of collagen Ⅰ, α-SMA and TRPC6, reactive oxygen species (ROS) production, mitochondrial membrane potential, and cell proliferation capacity were assessed. Network pharmacology analysis was performed to explore the mechanism by which PD alleviated pulmonary fibrosis. RESULTS: PD treatment significantly alleviated pulmonary fibrosis and reduced α-SMA expression in BLM-induced mouse models (P<0.05). In TGF-ß1-induced primary mouse lung fibroblasts, PD effectively inhibited the cell proliferation, reduced ROS production (P<0.0001), rescued the reduction of mitochondrial membrane potential (P<0.001), and inhibited the expressions of α-SMA and collagen Ⅰ (P<0.05). Network pharmacology analysis suggested that TRPC6 mediated the effect of PD for alleviating pulmonary fibrosis. Immunohistochemistry showed that PD significantly reduced TRPC6 expression in the lung tissues of BLM-induced mice. In primary mouse lung fibroblasts, PD significantly inhibited TGF-ß1-induced TRPC6 expression (P<0.05), and LA treatment obviously lowered the expression levels of TRPC6, α-SMA and collagenⅠ (P<0.05). CONCLUSION: PD alleviated pulmonary fibrosis in mice possibly by down-regulating TRPC6 and reducing ROS production.


Subject(s)
Pulmonary Fibrosis , Saponins , Triterpenes , Mice , Animals , Pulmonary Fibrosis/chemically induced , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , TRPC6 Cation Channel/metabolism , TRPC6 Cation Channel/therapeutic use , Mice, Inbred C57BL , Lung/pathology , Fibroblasts , Bleomycin/adverse effects , Collagen Type I
13.
Chem Biol Drug Des ; 103(1): e14419, 2024 01.
Article in English | MEDLINE | ID: mdl-38230792

ABSTRACT

Diabetic retinopathy (DR) is one of the most frequently occurring diabetic complications associated with inflammation and oxidative stress. Platycodin D (PLD) is a bio-active saponin that has been reported to exhibit anti-inflammation, anti-oxidative, and antidiabetic activities. Therefore, we speculated the protective effects of PLD on DR in the present study. Our results demonstrated that PLD attenuated high glucose (HG)-induced inflammation, as evidenced by decreased production of TNF-α, IL-1ß, IL-6. The HG-induced oxidative stress was prevented by PLD with decreased ROS production and malondialdehyde (MDA) level, as well as increased activities of superoxide dismutase and glutathione (GSH). In addition, treatment of PLD significantly decreased the apoptotic rate in HG-induced ARPE-19 cells. The HG-caused increases in expression of bax and cleaved capsase-3, as well a decrease in bcl-2 expression were attenuated by PLD. Furthermore, PLD suppressed the activation of TLR4/MyD88/NF-κB and enhanced the activation of Nrf2/HO-1 pathway in HG-induced ARPE-19 cells. Additionally, overexpression of TLR4 attenuated the anti-inflammatory, while knockdown of Nrf2 reversed the anti-oxidative and anti-apoptotic activities of PLD in HG-stimulated ARPE-19 cells. Furthermore, PLD attenuates retinal damage in DR rats. Finally, we demonstrated that PLD weakened the TLR4/MyD88/NF-κB p65 pathway and promoted the Nrf2/HO-1 pathway in vivo. Taken together, these findings indicated that PLD exerted protective effects against DR, which were attributed to the regulation of TLR4/MyD88/NF-κB and Nrf2/HO-1 signaling pathways.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Saponins , Triterpenes , Rats , Animals , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-E2-Related Factor 2/metabolism , Toll-Like Receptor 4/metabolism , Diabetic Retinopathy/drug therapy , Signal Transduction , Inflammation , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
14.
Chem Biol Drug Des ; 103(1): e14446, 2024 01.
Article in English | MEDLINE | ID: mdl-38230787

ABSTRACT

Ammonia can induce pulmonary fibrosis in humans and animals. Platycodin D (PLD) possesses various bioactive activities including anti-fibrotic properties. In this study, we aimed to explore the activity and mechanism of PLD in pulmonary fibrosis induced by ammonia. The mouse model of ammonia-induced lung fibrosis was established, and the role of PLD was assessed by H&E and Masson's trichrome staining. The differentially expressed genes (DEGs) were identified by RNA-seq and subjected to GO and KEGG pathway analyses. BEAS-2B cells were treated with NH4 Cl alone or along with PLD. Results showed that PLD attenuated ammonia-induced pulmonary inflammation and fibrosis in vivo. The extracellular matrix (ECM)-receptor interaction pathway was predicted as a prominent pathway underlying the anti-fibrotic function of PLD. In ammonia-induced mouse models and NH4 Cl-treated BEAS-2B cells, PLD could repress the activation of the TGF-ß1 pathway. By incubating lung fibroblast HFL1 cells with the conditioned medium of BEAS-2B cells treated with NH4Cl alone or along with PLD, PLD was confirmed to attenuate NH4 Cl-induced ECM deposition in HFL1 cells. Our findings demonstrate that PLD exerts a protective function in ammonia-induced pulmonary fibrosis by repressing TGF-ß1-mediated ECM remodeling, suggesting the potential therapeutic value of PLD in this disease.


Subject(s)
Pulmonary Fibrosis , Saponins , Triterpenes , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/pharmacology , Ammonia/adverse effects , Ammonia/metabolism , Signal Transduction , Extracellular Matrix , Fibroblasts/metabolism , Disease Models, Animal , Bleomycin/adverse effects
15.
Acta Pharmaceutica Sinica ; (12): 724-734, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016610

ABSTRACT

In this paper, the antitussive and expectorant activity of platycodin D (PD) were studied by constructing a mouse cough induced by concentrated ammonia water and a mouse trachea phenol red excretion model. The mechanism of antitussive and expectorant effect of PD was studied by metabolomics. The animal experiment was approved by the Animal Ethics Committee of Jiangxi University of Chinese Medicine (approval number: JZLLSC-20220739). Then mice were randomly divided into the normal, model, positive drug, PD low-dose, PD medium-dose and PD high-dose group. The antitussive and expectorant effects of PD were evaluated using a cough mouse model induced by concentrated ammonia water and a mouse tracheal phenol red excretion model, respectively. UHPLC-LTQ-Orbitrap-MS was used to identify the metabolites of mouse lung tissue, and multivariate statistical analysis method of orthogonal partial least squares discriminant analysis (OPLS-DA) was used for metabolites profile analysis. The differential metabolites were screened by variable projected importance value (VIP) and t-test results. Pathways for enrichment of differentiated metabolites were analyzed using the MetaboAnalyst platform. The comparative method was applied to analyze the differences in mechanisms of PD, Deapio-platycodin D (DPD) and total platycosides fraction. The results showed that PD at different concentrations could significantly prolong (P < 0.05) the incubation period of cough mice induced by ammonia water, reduce the coughs frequency, and significantly increase (P < 0.05) the amount of phenol red excretion in phenol red excretion model mice. PD could regulate 6 metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, linoleic acid metabolism, phenylalanine metabolism, glycerophospholipid metabolism, and tyrosine metabolism to exert antitussive effect. It could also regulate 8 metabolic pathways of linoleic acid metabolism, glyoxylic acid and dicarboxylic acid metabolism, glycerol phospholipid metabolism, citric acid cycle and arachidonic acid metabolism to exert an expectorant effect. However, only linoleic acid metabolism and glycerophospholipid metabolism could be regulated by the PD, total platycosides fraction and DPD, which may be ascribed to the structural difference of the platycosides and the interaction between platycosides and the intestinal microbiota. Functional analysis showed that these metabolic pathways are closely related to the regulatory mechanisms of anti-inflammatory response, immune function regulation, neurotransmitter release, cell signal transduction, energy metabolism and cell apoptosis. This study shows that PD possesses good antitussive and expectorant activities. In addition, the mechanism difference of PD, total platycosides fraction and DPD imply that the apiose in PD and the interaction between PD and intestinal microbiota could exert an important effect on the antitussive and expectorant mechanism of the platycosides.

16.
BMC Plant Biol ; 23(1): 589, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001405

ABSTRACT

BACKGROUND: Platycodon grandiflorus (Jacq.) A. DC is a famous traditional Chinese medicine in China and an authentic medicine in Inner Mongolia. It has been traditionally used as an expectorant in cough and also has anti-inflammatory and other pharmacological effects. As a homologous plant of medicine and food, P. grandiflorus is widely planted in Northeast China. Soil salinity isa limiting factor for its cultivation. In this study, we comprehensively described the physiological characteristics of P. grandiflorus and combined transcriptomics and metabolomics to study the response of roots of P. grandiflorus to salt stress. RESULTS: Overall, 8,988 differentially expressed genes were activated and significantly altered the metabolic processes. In total, 428 differentially abundant metabolites were affected by salt stress. After moderate and severe salt stress, most of the differentially abundant metabolites were enriched in the L-phenylalanine metabolic pathway. Through the comprehensive analysis of the interaction between key genes and metabolites, the main pathways such as lignin compound biosynthesis and triterpene saponin biosynthesis were completed. The relative content of compounds related to lignin biosynthesis, such as caffeic acid, coniferin, and syringing, increased under salt stress, and the related genes such as PAL, C4H, and the key enzyme gene UGT72E2 were activated to adapt to the salt stress. Platycodon saponin is one of the major triterpene saponins in P. grandiflorus, and Platycodin D is its most abundant major bioactive component. Under severe salt stress, Platycodin D level increased by nearly 1.77-fold compared with the control group. Most of the genes involved insynthetic pathway of Platycodin D, such as HMGCR, GGPS, SE, and LUP, were upregulated under salt stress. CONCLUSION: Salt stress led to a decrease in the biomass and affected the activities of antioxidant enzymes and contents of osmotic regulators in the plant. These results provided not only novel insights into the underlying mechanisms of response of P. grandiflorus to salt stress but also a foundation for future studies on the function of genes related to salt tolerance in the triterpenoid saponin biosynthesis pathway.


Subject(s)
Saponins , Triterpenes , Transcriptome , Lignin , Triterpenes/metabolism , Salt Tolerance
17.
Food Sci Nutr ; 11(10): 6425-6434, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823168

ABSTRACT

Platycosides, major components of Platycodon grandiflorum (PG) extract, have been implicated in a wide range of biological effects. In particular, platycodin D (PD) is a well-known main bioactive compound of Platycosides. Despite the biological significance of PD, optimization of extract condition for PD from PG root has not been well investigated. Here, we established the optimum extraction condition as ethanol concentration of 0%, temperature of 50°C, and extraction time of 11 h to obtain PD-rich P. grandiflorum extract (PGE) by using response surface methodology (RSM) with Box-Behnken design (BBD). The 5.63 mg/g of PD was extracted from the PG root in optimum condition, and this result was close to the predicted PD content. To analyze the biological activity of PGE related to mucin production, we demonstrated the inhibitory effect of PGE on PMA-induced hyperexpression of MUC5AC as well as ERK activation, a signal mediator of MUC5AC expression. Moreover, we showed that PGE had expectorant activity in mice. These results indicated that PGE had sufficient functions as a potential mucoregulator and expectorant for treating diverse airway diseases. Additionally, we confirmed that PGE had antioxidant activity and inhibited LPS-induced proinflammatory cytokines, TNF-α, and IL-6. Taken together, PGE derived from novel optimizing conditions showed various biological effects, suggesting that PGE could be directly applied to the food industry as food material having therapeutic and preventive potential for human airway diseases.

18.
Oncol Lett ; 26(4): 453, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37720665

ABSTRACT

Due to the serious side effects of chemotherapy drugs against lung cancer, and the antitumor properties and high safety of magnetic fields, the present study combined moderate or ultra-high intensity statics magnetic fields (SMFs) with platycodin D (PD) to explore the antitumor efficiency and biosafety. The antitumor effects of PD with or without moderate and ultra-high SMFs on A549 cells bearing mice were compared. Mouse body weight, food/water intake, hematology routine, blood biochemistry, tumor weight and tissues hematoxylin and eosin (H&E) staining were examined. Behavior was measured using the elevated plus maze, open field and vital signs tests. The combined targets of PD and SMFs were detected using RNA-sequencing (RNA-seq). The results showed that the antitumor effect of 22 Tesla (T) SMF group was 3.6-fold higher compared with that of the 2 mg/kg PD group (tumor growth inhibition=10.08%), while the antitumor effect of 150 mT SMF was only 1.56-fold higher compared with that of PD. Although PD reduced the food intake, there was no significant difference in body weight, water intake or food consumption among PD and SMF groups. Behavioral results indicated that PD ameliorated dysphoria in mice, but SMFs reduced this effect. However, no significant abnormalities were found in routine blood, blood biochemistry test, H&E staining or organ index, except renal index which was reduced by PD with or without SMFs. RNA-sequencing (RNA-seq) demonstrated that SMFs and PD synergistically targeted the expression of genes associated with tumor growth, inflammation and neurological disease. The present study showed the antitumor efficacy and biosafety of moderate or ultra-high SMF combined with PD, which exhibited only few side effects in the treatment of lung cancer, thus supporting further research for the clinical application of magnetic fields.

19.
Int Immunopharmacol ; 115: 109733, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37724959

ABSTRACT

During breast cancer development, programmed cell death 1 ligand 1 (PD-L1) overexpression in neutrophils leads to delayed apoptosis and promotes neutrophil hyperproliferation in the lung to form a premetastatic niche, which is beneficial for pulmonary metastasis. Platycodin D (PlaD), a triterpenoid saponin with known anti-inflammatory and antitumor effects, has been reported to downregulate PD-L1 expression. This study aimed to investigate the inhibitory effect of PlaD on neutrophil PD-L1 in 4 T1 tumor-bearing mice and the potential mechanism of breast cancer pulmonary metastasis. In this study, the orthotopic 4 T1 murine mammary carcinoma model was administered 10 and 20 mg/kg PlaD by gavage. PlaD reduced the excess neutrophils and decreased their high migratory capacity in bone marrow, peripheral blood and lung tissue in the premetastatic period, thereby effectively inhibiting tumor growth and pulmonary metastasis. Moreover, PlaD inhibited the phosphatidylinositol-3-kinase (PI3K)/Akt pathway by decreasing the expression of PD-L1 in neutrophils and promoted neutrophil apoptosis. In vitro, PlaD treatment decreased the viability and inhibited migration of neutrophil-like dHL-60 in a dose-dependent manner. Similarly, PlaD inhibited the increase in PD-L1 induced by IFN-γ stimulation and subsequently induced apoptosis in dHL-60 cells. In conclusion, the administration of PlaD inhibited the PI3K/Akt signaling pathway by reducing the expression of PD-L1 in neutrophils. PlaD promoted neutrophil apoptosis, thereby inhibiting the establishment of a premetastatic niche and ultimately blocking the development of pulmonary metastasis.


Subject(s)
Lung Neoplasms , Saponins , Triterpenes , Animals , Mice , B7-H1 Antigen , Neutrophils , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Lung Neoplasms/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Apoptosis , Phosphatidylinositol 3-Kinase
20.
Eur J Pharmacol ; 958: 176074, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37742812

ABSTRACT

BACKGROUND: Platycodin D (PD) is a potent bioactive constituent in the medicinal herb Platycodon grandiflorum. It has shown anticancer properties, particularly against glioblastoma (GB) and other human malignancies. DEPDC1B (DEP domain-containing protein 1B) is an oncogene associated with epithelial-mesenchymal transition (EMT). It is highly expressed in GB and correlated with tumor grade and patient prognosis. In this study, we investigated whether the antiglioma effect of PD was associated with downregulation of DEPDC1B. METHODS: Gene expression and clinical data were obtained from the China Glioma Genome Atlas and The Cancer Genome Atlas databases for glioma samples. In vitro experiments were conducted using Cell Counting Kit-8 and Transwell assays to assess the impact of PD on the proliferation, migration, and invasion of GB cells. mRNA and protein expression was evaluated using real-time polymerase chain reaction and western blotting, respectively. RESULTS: PD exerted inhibitory effects on the proliferation and motility of GB cells. PD downregulated DEPDC1B protein as well as several markers associated with EMT, namely N-cadherin, vimentin, and Snail. The suppressive effects of PD were enhanced when DEPDC1B was knocked down in GB cells, while overexpression of DEPDC1B in cells reversed the inhibitory effects of PD. CONCLUSION: PD exerts an antiglioma effect by regulating DEPDC1B-mediated EMT.

SELECTION OF CITATIONS
SEARCH DETAIL