ABSTRACT
BACKGROUND: Heat stress (HS) poses significant threats to the sustainability of livestock production. Genetically improving heat tolerance could enhance animal welfare and minimize production losses during HS events. Measuring phenotypic indicators of HS response and understanding their genetic background are crucial steps to optimize breeding schemes for improved climatic resilience. The identification of genomic regions and candidate genes influencing the traits of interest, including variants with pleiotropic effects, enables the refinement of genotyping panels used to perform genomic prediction of breeding values and contributes to unraveling the biological mechanisms influencing heat stress response. Therefore, the main objectives of this study were to identify genomic regions, candidate genes, and potential pleiotropic variants significantly associated with indicators of HS response in lactating sows using imputed whole-genome sequence (WGS) data. Phenotypic records for 18 traits and genomic information from 1,645 lactating sows were available for the study. The genotypes from the PorcineSNP50K panel containing 50,703 single nucleotide polymorphisms (SNPs) were imputed to WGS and after quality control, 1,622 animals and 7,065,922 SNPs were included in the analyses. RESULTS: A total of 1,388 unique SNPs located on sixteen chromosomes were found to be associated with 11 traits. Twenty gene ontology terms and 11 biological pathways were shown to be associated with variability in ear skin temperature, shoulder skin temperature, rump skin temperature, tail skin temperature, respiration rate, panting score, vaginal temperature automatically measured every 10 min, vaginal temperature measured at 0800 h, hair density score, body condition score, and ear area. Seven, five, six, two, seven, 15, and 14 genes with potential pleiotropic effects were identified for indicators of skin temperature, vaginal temperature, animal temperature, respiration rate, thermoregulatory traits, anatomical traits, and all traits, respectively. CONCLUSIONS: Physiological and anatomical indicators of HS response in lactating sows are heritable but highly polygenic. The candidate genes found are associated with important gene ontology terms and biological pathways related to heat shock protein activities, immune response, and cellular oxidative stress. Many of the candidate genes with pleiotropic effects are involved in catalytic activities to reduce cell damage from oxidative stress and cellular mechanisms related to immune response.
Subject(s)
Heat-Shock Response , Lactation , Polymorphism, Single Nucleotide , Animals , Female , Heat-Shock Response/genetics , Lactation/genetics , Swine/genetics , Phenotype , Quantitative Trait Loci , Genotype , GenomicsABSTRACT
Urbanization stands out as a significant anthropogenic factor, exerting selective pressures on ecosystems and biotic components. A notable outcome of urbanization is thermal heterogeneity where the emergence of Urban Heat Islands is characterized by elevated air and surface temperatures compared to adjacent rural areas. Investigating the influence of thermal heterogeneity on urban animals could offer insights into how temperature variations can lead to phenotypic shifts. Urban pigeons (Columba livia) serve as an excellent model for studying urban thermal effects, given the melanism variations, which are associated with the pleiotropy of the melanocortin system. To examine the development of physiological plasticity in response to urban thermal variations, we conducted a study on pigeons in Santiago, Chile, during the rainy season. We assessed the influence of habitat on physiological traits related to metabolism and antioxidant capacities, which are theoretically affected by feather coloration. Our findings reveal that variations in melanism significantly impact pigeon physiology, affecting both antioxidant capacities and the mitochondrial activity of red blood cells. It was found that higher urban temperatures, from both the current sampling month and the prior sampling month (from CRU TS dataset), were negatively and strongly associated with lower antioxidant and metabolic activities. This suggests that elevated urban temperatures likely benefit the energetic budgets of pigeon populations and mitigate the negative effects of oxidative metabolism, with differential effects depending on feather colorations.
Subject(s)
Columbidae , Melanosis , Animals , Columbidae/physiology , Cities , Feathers , Antioxidants , Ecosystem , Hot Temperature , Oxidative StressABSTRACT
Physiological systems are subject to interindividual variation encoded by genetics. Genome-wide association studies (GWAS) operate by surveying thousands of genetic variants from a substantial number of individuals and assessing their association to a trait of interest, be it a physiological variable, a molecular phenotype (e.g. gene expression), or even a disease or condition. Through a myriad of methods, GWAS downstream analyses then explore the functional consequences of each variant and attempt to ascertain a causal relationship to the phenotype of interest, as well as to delve into its links to other traits. This type of investigation allows mechanistic insights into physiological functions, pathological disturbances and shared biological processes between traits (i.e. pleiotropy). An exciting example is the discovery of a new thyroid hormone transporter (SLC17A4) and hormone metabolising enzyme (AADAT) from a GWAS on free thyroxine levels. Therefore, GWAS have substantially contributed with insights into physiology and have been shown to be useful in unveiling the genetic control underlying complex traits and pathological conditions; they will continue to do so with global collaborations and advances in genotyping technology. Finally, the increasing number of trans-ancestry GWAS and initiatives to include ancestry diversity in genomics will boost the power for discoveries, making them also applicable to non-European populations.
Subject(s)
Genome-Wide Association Study , Genomics , Genome-Wide Association Study/methods , Phenotype , Gene Expression Regulation , Polymorphism, Single NucleotideABSTRACT
Abstract Evolutionary medicine studies the role of evolution in health problems. Diseases are considered as phenotypes generated by the expression of sets of genes and a complex interplay with the environment. The main mechanisms involved in evolutionary medicine are antagonistic pleiotropy, ecological antagonistic pleiotropy, atavisms and heterochrony. Antagonistic pleiotropism refers to genes that are beneficial during certain stages of development but become detrimental in others. Ecological antagonistic pleiotropy refers to the misadaptation to current lifestyle conditions which are different from those in which humans evolved. These mechanisms participate in the development of congestive heart failure, hypertension and atherosclerosis. Atavistic conditions or genes are expressed in our ancestors but have remained silent during evolution being suddenly expressed without an apparent cause during the appearance of a disease is another mechanism in evolutionary cardiology. The change in the heart metabolism from fatty acid to glucose dependent can be considered as an atavistic condition that appears in the heart after a stroke and may underlie impaired cardiomyocyte regeneration. Heterochrony is the expression of genes that cause the appearance of traits at a different timing during development and is therefore related to atavisms. Evolutionary medicine explains the interactions of pathogens and the host in infectious diseases where the cardiac tissue becomes a target. Mechanisms involved in evolutionary medicine participate in the generation of diseases and may be approached experimentally. Therefore, to better understand health problems and therapeutical approaches, an evolutionary medicine approach in experimental medicine may prove useful.
Resumen La medicina evolutiva estudia el papel de la evolución en los problemas de salud. Las enfermedades son fenotipos generados por la expresión de genes y una interacción compleja con el medio ambiente. Los principales mecanismos implicados son la pleiotropía antagonista, la pleiotropía antagonista ecológica, los atavismos y la heterocronía. El pleiotropismo antagonista se refiere a situaciones donde los genes que son beneficiosos durante ciertas etapas del desarrollo resultan perjudiciales en otras. La pleiotropía antagonista ecológica se refiere a la mala adaptación a las condiciones de vida actuales, que difieren de aquellas en las que los humanos evolucionaron. Estos mecanismos participan en el desarrollo de insuficiencia cardiaca congestiva, hipertensión y aterosclerosis. Las condiciones o genes atávicos fueron características que se expresaron en nuestros antepasados pero han permanecido silenciadas durante la evolución, expresándose repentinamente durante una enfermedad; un ejemplo es el cambio metabólico en el corazón de dependiente de ácidos grasos a dependiente de glucosa en condiciones de hipoxia que aparece después de un infarto y puede subyacer a la dificultad de la regeneración de los cardiomiocitos. La heterocronía es la expresión de genes que provocan la aparición de rasgos en un momento diferente durante el desarrollo. La medicina evolutiva también explica las interacciones entre los patógenos y el huésped en enfermedades infecciosas. Los mecanismos implicados en la medicina evolutiva participan en la generación de enfermedades y pueden abordarse experimentalmente. Por tanto, la medicina experimental puede enriquecer la medicina evolutiva y el origen de muchos problemas de salud.
ABSTRACT
Enhancers are regulatory elements of genomes that determine spatio-temporal patterns of gene expression. The human genome contains a vast number of enhancers, which largely outnumber protein-coding genes. Historically, enhancers have been regarded as highly tissue-specific. However, recent evidence has demonstrated that many enhancers are pleiotropic, with activity in multiple developmental contexts. Yet, the extent and impact of pleiotropy remain largely unexplored. In this study we analyzed active enhancers across human organs based on the analysis of both eRNA transcription (FANTOM5 consortium data sets) and chromatin architecture (ENCODE consortium data sets). We show that pleiotropic enhancers are pervasive in the human genome and that most enhancers active in a particular organ are also active in other organs. In addition, our analysis suggests that the proportion of context-specific enhancers of a given organ is explained, at least in part, by the proportion of context-specific genes in that same organ. The notion that such a high proportion of human enhancers can be pleiotropic suggests that small regions of regulatory DNA contain abundant regulatory information and that these regions evolve under important evolutionary constraints.
Subject(s)
Enhancer Elements, Genetic , Genome, Human , Biological Evolution , Chromatin/genetics , HumansABSTRACT
Evolutionary medicine studies the role of evolution in health problems. Diseases are considered as phenotypes generated by the expression of sets of genes and a complex interplay with the environment. The main mechanisms involved in evolutionary medicine are antagonistic pleiotropy, ecological antagonistic pleiotropy, atavisms and heterochrony. Antagonistic pleiotropism refers to genes that are beneficial during certain stages of development but become detrimental in others. Ecological antagonistic pleiotropy refers to the misadaptation to current lifestyle conditions which are different from those in which humans evolved. These mechanisms participate in the development of congestive heart failure, hypertension and atherosclerosis. Atavistic conditions or genes are expressed in our ancestors but have remained silent during evolution being suddenly expressed without an apparent cause during the appearance of a disease is another mechanism in evolutionary cardiology. The change in the heart metabolism from fatty acid to glucose dependent can be considered as an atavistic condition that appears in the heart after a stroke and may underlie impaired cardiomyocyte regeneration. Heterochrony is the expression of genes that cause the appearance of traits at a different timing during development and is therefore related to atavisms. Evolutionary medicine explains the interactions of pathogens and the host in infectious diseases where the cardiac tissue becomes a target. Mechanisms involved in evolutionary medicine participate in the generation of diseases and may be approached experimentally. Therefore, to better understand health problems and therapeutical approaches, an evolutionary medicine approach in experimental medicine may prove useful.
La medicina evolutiva estudia el papel de la evolución en los problemas de salud. Las enfermedades son fenotipos generados por la expresión de genes y una interacción compleja con el medio ambiente. Los principales mecanismos implicados son la pleiotropía antagonista, la pleiotropía antagonista ecológica, los atavismos y la heterocronía. El pleiotropismo antagonista se refiere a situaciones donde los genes que son beneficiosos durante ciertas etapas del desarrollo resultan perjudiciales en otras. La pleiotropía antagonista ecológica se refiere a la mala adaptación a las condiciones de vida actuales, que difieren de aquellas en las que los humanos evolucionaron. Estos mecanismos participan en el desarrollo de insuficiencia cardiaca congestiva, hipertensión y aterosclerosis. Las condiciones o genes atávicos fueron características que se expresaron en nuestros antepasados pero han permanecido silenciadas durante la evolución, expresándose repentinamente durante una enfermedad; un ejemplo es el cambio metabólico en el corazón de dependiente de ácidos grasos a dependiente de glucosa en condiciones de hipoxia que aparece después de un infarto y puede subyacer a la dificultad de la regeneración de los cardiomiocitos. La heterocronía es la expresión de genes que provocan la aparición de rasgos en un momento diferente durante el desarrollo. La medicina evolutiva también explica las interacciones entre los patógenos y el huésped en enfermedades infecciosas. Los mecanismos implicados en la medicina evolutiva participan en la generación de enfermedades y pueden abordarse experimentalmente. Por tanto, la medicina experimental puede enriquecer la medicina evolutiva y el origen de muchos problemas de salud.
Subject(s)
Biological Evolution , Cardiology , PhenotypeABSTRACT
BACKGROUND: Two-sample Mendelian randomization (MR) allows the use of freely accessible summary association results from genome-wide association studies (GWAS) to estimate causal effects of modifiable exposures on outcomes. Some GWAS adjust for heritable covariables in an attempt to estimate direct effects of genetic variants on the trait of interest. One, both or neither of the exposure GWAS and outcome GWAS may have been adjusted for covariables. METHODS: We performed a simulation study comprising different scenarios that could motivate covariable adjustment in a GWAS and analysed real data to assess the influence of using covariable-adjusted summary association results in two-sample MR. RESULTS: In the absence of residual confounding between exposure and covariable, between exposure and outcome, and between covariable and outcome, using covariable-adjusted summary associations for two-sample MR eliminated bias due to horizontal pleiotropy. However, covariable adjustment led to bias in the presence of residual confounding (especially between the covariable and the outcome), even in the absence of horizontal pleiotropy (when the genetic variants would be valid instruments without covariable adjustment). In an analysis using real data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and UK Biobank, the causal effect estimate of waist circumference on blood pressure changed direction upon adjustment of waist circumference for body mass index. CONCLUSIONS: Our findings indicate that using covariable-adjusted summary associations in MR should generally be avoided. When that is not possible, careful consideration of the causal relationships underlying the data (including potentially unmeasured confounders) is required to direct sensitivity analyses and interpret results with appropriate caution.
Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Bias , Body Mass Index , Causality , Humans , Polymorphism, Single NucleotideABSTRACT
The platelet-derived growth factor receptor beta (PDGFRB) gene is involved in proliferative and developmental processes in mammals. Variations in this gene lead to several different syndromic conditions, such as infantile myofibromatosis I, sporadic port-wine stain, primary familial brain calcification, and the Penttinen and overgrowth syndromes. Our objective was to investigate PDGFRB's genetic relationship to clinical conditions and evaluate the protein interactions using GeneNetwork, GeneMANIA, and STRING network databases. We have evidenced the gene's pleiotropy through its many connections and its link to syndromic conditions. Therefore, PDGFRB may be an important therapeutic target for treating such conditions.
Subject(s)
Genetic Pleiotropy , Genetic Predisposition to Disease , Receptor, Platelet-Derived Growth Factor beta/genetics , Acro-Osteolysis/genetics , Binding Sites , Calcinosis/genetics , Growth Disorders/genetics , Humans , Limb Deformities, Congenital/genetics , Myofibromatosis/congenital , Myofibromatosis/genetics , Port-Wine Stain/genetics , Progeria/genetics , Protein Interaction Maps , Receptor, Platelet-Derived Growth Factor beta/chemistry , Receptor, Platelet-Derived Growth Factor beta/metabolismABSTRACT
Protein science has moved from a focus on individual molecules to an integrated perspective in which proteins emerge as dynamic players with multiple functions, rather than monofunctional specialists. Annotation of the full functional repertoire of proteins has impacted the fields of biochemistry and genetics, and will continue to influence basic and applied science questions - from the genotype-to-phenotype problem, to our understanding of human pathologies and drug design. In this review, we address the phenomena of pleiotropy, multidomain proteins, promiscuity, and protein moonlighting, providing examples of multitasking biomolecules that underlie specific mechanisms of human disease. In doing so, we place in context different types of multifunctional proteins, highlighting useful attributes for their systematic definition and classification in future research directions.
ABSTRACT
Probiotic bacteria are frequently used to treat intestinal diseases or to improve health; however, little is known about the evolutionary changes of these bacteria during probiotic manufacture and the bacterial ability to colonize the intestine. It has been observed that when bacteria adapt to a new environment, they lose some traits required to thrive in the original niche. In this study, a strain of Lactobacillus reuteri was isolated from mouse duodenum and subjected to 150 serial passes in milk to simulate the industrial propagation of probiotic bacteria. The strains adapted to milk outperformed their ancestor when grown in milk; we also showed evidence of reduced intestinal colonization of milk-adapted strains. Whole-genome sequencing showed that bacterial adaptation to milk selects mutants with altered metabolic functions.
Subject(s)
Biological Evolution , Gastrointestinal Microbiome , Limosilactobacillus reuteri/physiology , Probiotics , Animals , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Female , Genome, Bacterial , Genomics/methods , Limosilactobacillus reuteri/drug effects , Mice , Milk/microbiology , Mutation , Rifampin/pharmacologyABSTRACT
The current paradigm in the field of gene regulation postulates that regulatory information for generating gene expression is organized into modules (enhancers), each containing the information for driving gene expression in a single spatiotemporal context. This modular organization is thought to facilitate the evolution of gene expression by minimizing pleiotropic effects. Here we review recent studies that provide evidence of quite the opposite: (i) enhancers can function in multiple developmental contexts, implying that enhancers can be pleiotropic, (ii) transcription factor binding sites within pleiotropic enhancers are reused in different contexts, and (iii) pleiotropy impacts the structure and evolution of enhancers. Altogether, this evidence suggests that enhancer pleiotropy is pervasive in animal genomes, challenging the commonly held view of modularity.
Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Animals , Binding Sites , Evolution, Molecular , Genetic Loci , Genome , Organ Specificity , Protein Binding , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolismABSTRACT
Aluminum (Al) toxicity on acidic soils significantly damages plant roots and inhibits root growth. Hence, crops intoxicated by Al become more sensitive to drought stress and mineral nutrient deficiencies, particularly phosphorus (P) deficiency, which is highly unavailable on tropical soils. Advances in our understanding of the physiological and genetic mechanisms that govern plant Al resistance have led to the identification of Al resistance genes, both in model systems and in crop species. It has long been known that Al resistance has a beneficial effect on crop adaptation to acidic soils. This positive effect happens because the root systems of Al resistant plants show better development in the presence of soil ionic Al3+ and are, consequently, more efficient in absorbing sub-soil water and mineral nutrients. This effect of Al resistance on crop production, by itself, warrants intensified efforts to develop and implement, on a breeding scale, modern selection strategies to profit from the knowledge of the molecular determinants of plant Al resistance. Recent studies now suggest that Al resistance can exert pleiotropic effects on P acquisition, potentially expanding the role of Al resistance on crop adaptation to acidic soils. This appears to occur via both organic acid (OA)- and non-OA transporters governing a joint, iron-dependent interplay between Al resistance and enhanced P uptake, via changes in root system architecture. Current research suggests this interplay to be part of a P stress response, suggesting that this mechanism could have evolved in crop species to improve adaptation to acidic soils. Should this pleiotropism prove functional in crop species grown on acidic soils, molecular breeding based on Al resistance genes may have a much broader impact on crop performance than previously anticipated. To explore this possibility, here we review the components of this putative effect of Al resistance genes on P stress responses and P nutrition to provide the foundation necessary to discuss the recent evidence suggesting pleiotropy as a genetic linkage between Al resistance and P efficiency. We conclude by exploring what may be needed to enhance the utilization of Al resistance genes to improve crop production on acidic soils.
ABSTRACT
A single gene can partake in several biological processes, and therefore gene deletions can lead to different-sometimes unexpected-phenotypes. However, it is not always clear whether such pleiotropy reflects the loss of a unique molecular activity involved in different processes or the loss of a multifunctional protein. Here, using Saccharomyces cerevisiae metabolism as a model, we systematically test the null hypothesis that enzyme phenotypes depend on a single annotated molecular function, namely their catalysis. We screened a set of carefully selected genes by quantifying the contribution of catalysis to gene deletion phenotypes under different environmental conditions. While most phenotypes were explained by loss of catalysis, slow growth was readily rescued by a catalytically inactive protein in about one-third of the enzymes tested. Such noncatalytic phenotypes were frequent in the Alt1 and Bat2 transaminases and in the isoleucine/valine biosynthetic enzymes Ilv1 and Ilv2, suggesting novel "moonlighting" activities in these proteins. Furthermore, differential genetic interaction profiles of gene deletion and catalytic mutants indicated that ILV1 is functionally associated with regulatory processes, specifically to chromatin modification. Our systematic study shows that gene loss phenotypes and their genetic interactions are frequently not driven by the loss of an annotated catalytic function, underscoring the moonlighting nature of cellular metabolism.
Subject(s)
Phenotype , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Catalysis , Computational Biology/methods , Epistasis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Fungal , Gene Ontology , Genetic Association Studies , Genome, Fungal , Genomics/methods , Open Reading Frames , Saccharomyces cerevisiae/enzymology , Selection, Genetic , Sequence DeletionABSTRACT
Background: Mendelian randomization (MR) is being increasingly used to strengthen causal inference in observational studies. Availability of summary data of genetic associations for a variety of phenotypes from large genome-wide association studies (GWAS) allows straightforward application of MR using summary data methods, typically in a two-sample design. In addition to the conventional inverse variance weighting (IVW) method, recently developed summary data MR methods, such as the MR-Egger and weighted median approaches, allow a relaxation of the instrumental variable assumptions. Methods: Here, a new method - the mode-based estimate (MBE) - is proposed to obtain a single causal effect estimate from multiple genetic instruments. The MBE is consistent when the largest number of similar (identical in infinite samples) individual-instrument causal effect estimates comes from valid instruments, even if the majority of instruments are invalid. We evaluate the performance of the method in simulations designed to mimic the two-sample summary data setting, and demonstrate its use by investigating the causal effect of plasma lipid fractions and urate levels on coronary heart disease risk. Results: The MBE presented less bias and lower type-I error rates than other methods under the null in many situations. Its power to detect a causal effect was smaller compared with the IVW and weighted median methods, but was larger than that of MR-Egger regression, with sample size requirements typically smaller than those available from GWAS consortia. Conclusions: The MBE relaxes the instrumental variable assumptions, and should be used in combination with other approaches in sensitivity analyses.
Subject(s)
Genetic Pleiotropy , Mendelian Randomization Analysis , Causality , Genome-Wide Association Study , Humans , Models, Statistical , Sample SizeABSTRACT
The association between panic disorder (PD) and cardiovascular diseases (CVD) has been extensively studied in recent years and, although some studies have shown anxiety disorders co-existing or increasing the risk of heart disease, no causal hypothesis has been well established. Thus, a critical review was performed of the studies that evaluated the association between PD and cardiovascular diseases; synthesizing the evidence on the mechanisms mediators that theoretically would be the responsible for the causal pathway between PD and CVD, specifically. This overview shows epidemiological studies, and discusses biological mechanisms that could link PD to CVD, such as pleiotropy, heart rate variability, unhealthy lifestyle, atherosclerosis, mental stress, and myocardial perfusion defects. This study tried to provide a comprehensive narrative synthesis of previously published information regarding PD and CVD and open new possibilities of clinical management and pathophysiological understanding. Some epidemiological studies have indicated that PD could be a risk factor for CVD, raising morbidity and mortality in PD, suggesting an association between them. These studies argue that PD pathophysiology could cause or potentiate CVD. However, there is no evidence in favour of a causal relationship between PD and CVD. Therefore, PD patients with suspicions of cardiovascular symptoms need redoubled attention.
Subject(s)
Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/therapy , Panic Disorder/physiopathology , Panic Disorder/therapy , Cardiovascular Diseases/epidemiology , Heart Rate , Humans , Panic Disorder/epidemiology , Risk FactorsABSTRACT
OBJECTIVES: To determine genetic differences between agriculturalist and hunter-gatherer southern Native American populations for selected metabolism-related markers and to test whether Neel's thrifty genotype hypothesis (TGH) could explain the genetic patterns observed in these populations. MATERIALS AND METHODS: 375 Native South American individuals from 17 populations were genotyped using six markers (APOE rs429358 and rs7412; APOA2 rs5082; CD36 rs3211883; TCF7L2 rs11196205; and IGF2BP2 rs11705701). Additionally, APOE genotypes from 39 individuals were obtained from the literature. AMOVA, main effects, and gene-gene interaction tests were performed. RESULTS: We observed differences in allele distribution patterns between agriculturalists and hunter-gatherers for some markers. For instance, between-groups component of genetic variance (FCT ) for APOE rs429358 showed strong differences in allelic distributions between hunter-gatherers and agriculturalists (p = 0.00196). Gene-gene interaction analysis indicated that the APOE E4/CD36 TT and APOE E4/IGF2BP2 A carrier combinations occur at a higher frequency in hunter-gatherers, but this combination is not replicated in archaic (Neanderthal and Denisovan) and ancient (Anzick, Saqqaq, Ust-Ishim, Mal'ta) hunter-gatherer individuals. DISCUSSION: A complex scenario explains the observed frequencies of the tested markers in hunter-gatherers. Different factors, such as pleotropic alleles, rainforest selective pressures, and population dynamics, may be collectively shaping the observed genetic patterns. We conclude that although TGH seems a plausible hypothesis to explain part of the data, other factors may be important in our tested populations.
Subject(s)
Agriculture/history , Indians, South American/genetics , Indians, South American/history , Polymorphism, Single Nucleotide/genetics , Anthropology, Physical , Apolipoproteins E/genetics , CD36 Antigens/genetics , Genotype , History, Ancient , Humans , RNA-Binding Proteins/geneticsABSTRACT
The apolipoprotein E4 (E4) allele is present worldwide, despite its associations with higher risk of cardiovascular morbidity, accelerated cognitive decline during aging, and Alzheimer's disease (AD). The E4 allele is especially prevalent in some tropical regions with a high parasite burden. Equatorial populations also face a potential dual burden of high E4 prevalence combined with parasitic infections that can also reduce cognitive performance. We examined the interactions of E4, parasite burden, and cognitive performance in a traditional, nonindustrialized population of Amazonian forager-horticulturalists (N = 372) to test whether E4 protects against cognitive decline in environments with a heavy pathogen burden. Contrary to observations in industrial populations, older adult E4 carriers with high parasite burdens either maintained or showed slight improvements in cognitive performance, whereas non-E4 carriers with a high parasite burden showed reduced cognitive performance. Being an E4 carrier is the strongest risk factor to date of AD and cognitive decline in industrial populations; it is associated with greater cognitive performance in individuals facing a high parasite and pathogen load, suggesting advantages to the E4 allele under certain environmental conditions. The current mismatch between postindustrial hygienic lifestyles and active parasite-rich environs may be critical for understanding genetic risk for cognitive aging.-Trumble, B. C., Stieglitz, J., Blackwell, A. D., Allayee, H., Beheim, B., Finch, C. E., Gurven, M., Kaplan, H. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden.
Subject(s)
Alleles , Apolipoproteins E/genetics , Cognition Disorders/genetics , Parasitic Diseases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Child , Cognition Disorders/epidemiology , Female , Heterozygote , Humans , Indians, South American/genetics , Male , Middle Aged , Parasitic Diseases/epidemiologyABSTRACT
Knowledge of the genetic architecture of flowering and maturity is needed to develop effective breeding strategies in tropical soybean. The aim of this study was to identify haplotypes across multiple environments that contribute to flowering time and maturity, with the purpose of selecting desired alleles, but maintaining a minimal impact on yield-related traits. For this purpose, a genome-wide association study (GWAS) was undertaken to identify genomic regions that control days to flowering (DTF) and maturity (DTM) using a soybean association mapping panel genotyped for single nucleotide polymorphism (SNP) markers. Complementarily, yield-related traits were also assessed to discuss the implications for breeding strategies. To detect either stable or specific associations, the soybean cultivars (N = 141) were field-evaluated across eight tropical environments of Brazil. Seventy-two and forty associations were significant at the genome-wide level relating respectively to DTM and DTF, in two or more environments. Haplotype-based GWAS identified three haplotypes (Gm12_Hap12; Gm19_Hap42 and Gm20_Hap32) significantly co-associated with DTF, DTM and yield-related traits in single and multiple environments. These results indicate that these genomic regions may contain genes that have pleiotropic effects on time to flowering, maturity and yield-related traits, which are tightly linked with multiple other genes with high rates of linkage disequilibrium.
ABSTRACT
Quantitative trait loci (QTL) were mapped for longevity and fecundity at two temperatures, 20 and 30 °C, in two sets of recombinant inbred lines (RIL) highly differing in thermotolerance. Early fecundity (EF) and longevity showed a negative association between temperatures. For instance, longevity was higher and fecundity was lower in the RIL panel showing higher life span at 30 °C. One X-linked QTL (7B3-12E) co-localized for longevity and EF at 20 °C, with one QTL allele showing a positive additive effect on longevity and a negative effect on EF. The across-RIL genetic correlation between longevity and EF was not significant within each temperature, and most QTL that affect life span have no effect on EF at each temperature. EF and longevity can mostly be genetically uncoupled in the thermotolerance-divergent RIL within each temperature as opposed to between temperatures. QTL were mostly temperature specific, although some trait-specific QTL showed possible antagonistic effects between temperatures.