Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
J Exp Bot ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113673

ABSTRACT

Successful plant reproduction depends on the adequate development of flower organs controlled by cell proliferation and other processes. The SCI1 gene regulates cell proliferation and affects the final size of the female reproductive organ. To unravel the molecular mechanism exerted by SCI1 in cell proliferation control, we searched for its interaction partners through semi-in vivo pulldown experiments, uncovering a cyclin-dependent kinase, NtCDKG;2. Bimolecular fluorescence complementation (BiFC) and co-localization experiments showed that SCI1 interacts with NtCDKG;2 and its cognate NtCyclin L in nucleoli and splicing speckles. The screening of a yeast two-hybrid (Y2H) cDNA library using SCI1 as bait revealed a novel DEAD-box RNA helicase (NtRH35). The interaction between the NtCDKG;2-NtCyclin L complex, and NtRH35 was also shown. Subcellular localization experiments showed that SCI1, NtRH35, and the NtCDKG;2-NtCyclin L complex associate with each other within splicing speckles. The Y2H screening of NtCDKG;2 and NtRH35 identified the conserved spliceosome components U2a', NKAP, and CACTIN. This work presents SCI1 and its interactors NtCDKG;2-NtCyclin L complex, and NtRH35 as new spliceosome-associated proteins. Our findings reveal a network of interactions and suggest that SCI1 may regulate cell proliferation through the splicing process. This study provides new valuable insights into the intricate molecular pathways governing plant development.

2.
Mol Cell ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39191261

ABSTRACT

RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.

3.
Cell Rep ; 43(7): 114378, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38889007

ABSTRACT

The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.


Subject(s)
Enhancer Elements, Genetic , Histone-Lysine N-Methyltransferase , Myeloid-Lymphoid Leukemia Protein , Proto-Oncogene Proteins c-myb , Transcription, Genetic , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , Animals , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Mice , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Enhancer Elements, Genetic/genetics , RNA Polymerase II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/genetics , Proto-Oncogene Mas , Protein Binding , Cell Differentiation/genetics , Enhancer RNAs
4.
J Mol Biol ; : 168690, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936695

ABSTRACT

A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.

5.
Cell Rep ; 43(6): 114242, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38768033

ABSTRACT

Terminal differentiation requires massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4,000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identify dynamic occupancy of RNA polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II occupancy and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of-function, chromatin immunoprecipitation sequencing (ChIP-seq), and immunoprecipitation (IP) mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II occupancy at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms that drive differentiation gene expression and find that pause-release of Pol II and post-transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in renewing adult tissue.


Subject(s)
Cell Differentiation , Hepatocyte Nuclear Factor 4 , RNA Polymerase II , Animals , Mice , Enhancer Elements, Genetic , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Intestines , Promoter Regions, Genetic , RNA Polymerase II/metabolism
6.
Genome Biol ; 25(1): 126, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773641

ABSTRACT

BACKGROUND: DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS: To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS: Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.


Subject(s)
DNA Replication , RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/metabolism , Humans , S Phase/genetics , DNA Damage , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Genome, Human , Replication Origin
7.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38783706

ABSTRACT

RNA Polymerase II (Pol II) transcriptional elongation pausing is an integral part of the dynamic regulation of gene transcription in the genome of metazoans. It plays a pivotal role in many vital biological processes and disease progression. However, experimentally measuring genome-wide Pol II pausing is technically challenging and the precise governing mechanism underlying this process is not fully understood. Here, we develop RP3 (RNA Polymerase II Pausing Prediction), a network regularized logistic regression machine learning method, to predict Pol II pausing events by integrating genome sequence, histone modification, gene expression, chromatin accessibility, and protein-protein interaction data. RP3 can accurately predict Pol II pausing in diverse cellular contexts and unveil the transcription factors that are associated with the Pol II pausing machinery. Furthermore, we utilize a forward feature selection framework to systematically identify the combination of histone modification signals associated with Pol II pausing. RP3 is freely available at https://github.com/AMSSwanglab/RP3.


Subject(s)
Histone Code , RNA Polymerase II , RNA Polymerase II/metabolism , Humans , Transcription Elongation, Genetic , Chromatin/metabolism , Chromatin/genetics , Histones/metabolism , Machine Learning , Animals
8.
FASEB J ; 38(10): e23680, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38758186

ABSTRACT

Pol II pause release is a rate-limiting step in gene transcription, influencing various cell fate alterations. Numerous proteins orchestrate Pol II pause release, thereby playing pivotal roles in the intricate process of cellular fate modulation. Super elongation complex (SEC), a large assembly comprising diverse protein components, has garnered attention due to its emerging significance in orchestrating physiological and pathological cellular identity changes by regulating the transcription of crucial genes. Consequently, SEC emerges as a noteworthy functional complex capable of modulating cell fate alterations. Therefore, a comprehensive review is warranted to systematically summarize the core roles of SEC in different types of cell fate alterations. This review focuses on elucidating the current understanding of the structural and functional basis of SEC. Additionally, we discuss the intricate regulatory mechanisms governing SEC in various models of cell fate alteration, encompassing both physiological and pathological contexts. Furthermore, leveraging the existing knowledge of SEC, we propose some insightful directions for future research, aiming to enhance our mechanistic and functional comprehension of SEC within the diverse landscape of cell fate alterations.


Subject(s)
Cell Differentiation , Humans , Animals , Cell Differentiation/physiology , Transcription, Genetic
9.
Gene ; 924: 148616, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38795856

ABSTRACT

Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-ß, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.


Subject(s)
Stress, Physiological , Humans , Stress, Physiological/genetics , Gene Expression Regulation , Transcription Initiation, Genetic , Animals , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics
10.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38604171

ABSTRACT

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Subject(s)
Long Interspersed Nucleotide Elements , Matrix Attachment Region Binding Proteins , RNA Polymerase II , Receptors, Estrogen , Transcription, Genetic , Humans , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Long Interspersed Nucleotide Elements/genetics , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Matrix-Associated Proteins/genetics , Gene Expression Regulation , Protein Binding , HEK293 Cells , Genome, Human
11.
Front Immunol ; 15: 1366235, 2024.
Article in English | MEDLINE | ID: mdl-38601157

ABSTRACT

Introduction: The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods: Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results: We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions: We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.


Subject(s)
Immunity, Innate , RNA Polymerase II , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Antiviral Agents , Bromodomain Containing Proteins , Cell Cycle Proteins , Nuclear Proteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription Factors
12.
Viruses ; 16(3)2024 02 27.
Article in English | MEDLINE | ID: mdl-38543731

ABSTRACT

The chromatin-remodeler SPOC1 (PHF13) is a transcriptional co-regulator and has been identified as a restriction factor against various viruses, including human cytomegalovirus (HCMV). For HCMV, SPOC1 was shown to block the onset of immediate-early (IE) gene expression under low multiplicities of infection (MOI). Here, we demonstrate that SPOC1-mediated restriction of IE expression is neutralized by increasing viral titers. Interestingly, our study reveals that SPOC1 exerts an additional antiviral function beyond the IE phase of HCMV replication. Expression of SPOC1 under conditions of high MOI resulted in severely impaired viral DNA replication and viral particle release, which may be attributed to inefficient viral transcription. With the use of click chemistry, the localization of viral DNA was investigated at late time points after infection. Intriguingly, we detected a co-localization of SPOC1, RNA polymerase II S5P and polycomb repressor complex 2 (PRC2) components in close proximity to viral DNA in areas that are hypothesized to harbor viral transcription sites. We further identified the N-terminal domain of SPOC1 to be responsible for interaction with EZH2, a subunit of the PRC2 complex. With this study, we report a novel and potent antiviral function of SPOC1 against HCMV that is efficient even with unrestricted IE gene expression.


Subject(s)
Cytomegalovirus , Virus Replication , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , DNA Replication , DNA, Viral/metabolism , Antiviral Agents/pharmacology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
13.
Biochem Soc Trans ; 52(1): 455-464, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38372373

ABSTRACT

Transcription represents a central aspect of gene expression with RNA polymerase machineries (RNA Pol) driving the synthesis of RNA from DNA template molecules. In eukaryotes, a total of three RNA Pol enzymes generate the plethora of RNA species and RNA Pol II is the one transcribing all protein-coding genes. A high number of cis- and trans-acting factors orchestrates RNA Pol II-mediated transcription by influencing the chromatin recruitment, activation, elongation, and/or termination steps. The levels of DNA accessibility, defining open-euchromatin versus close-heterochromatin, delimits RNA Pol II activity as well as the encounter with other factors acting on chromatin such as the DNA replication or DNA repair machineries. The stage of the cell cycle highly influences RNA Pol II activity with mitosis representing the major challenge. In fact, there is a massive inhibition of transcription during the mitotic entry coupled with chromatin dissociation of most of the components of the transcriptional machinery. Mitosis, as a consequence, highly compromises the transcriptional memory and the perpetuation of cellular identity. Once mitosis ends, transcription levels immediately recover to define the cell fate and to safeguard the proper progression of daughter cells through the cell cycle. In this review, we evaluate our current understanding of the transcriptional repression associated with mitosis with a special focus on the molecular mechanisms involved, on the potential function behind the general repression, and on the transmission of the transcriptional machinery into the daughter cells. We finally discuss the contribution that errors in the inheritance of the transcriptional machinery across mitosis might play in stem cell aging.


Subject(s)
Mitosis , RNA Polymerase II , RNA Polymerase II/metabolism , Transcription, Genetic , Chromatin , DNA , RNA
14.
Biomolecules ; 14(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38397413

ABSTRACT

Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.


Subject(s)
RNA Polymerase II , Transcription, Genetic , Humans , RNA Polymerase II/chemistry , Transcription Factors/metabolism , Promoter Regions, Genetic , RNA, Messenger
15.
Dev Cell ; 59(5): 613-626.e6, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38325372

ABSTRACT

Initiation of timely and sufficient zygotic genome activation (ZGA) is crucial for the beginning of life, yet our knowledge of transcription factors (TFs) contributing to ZGA remains limited. Here, we screened the proteome of early mouse embryos after cycloheximide (CHX) treatment and identified maternally derived KLF17 as a potential TF for ZGA genes. Using a conditional knockout (cKO) mouse model, we further investigated the role of maternal KLF17 and found that it promotes embryonic development and full fertility. Mechanistically, KLF17 preferentially binds to promoters and recruits RNA polymerase II (RNA Pol II) in early 2-cell embryos, facilitating the expression of major ZGA genes. Maternal Klf17 knockout resulted in a downregulation of 9% of ZGA genes and aberrant RNA Pol II pre-configuration, which could be partially rescued by introducing exogenous KLF17. Overall, our study provides a strategy for screening essential ZGA factors and identifies KLF17 as a crucial TF in this process.


Subject(s)
RNA Polymerase II , Zygote , Animals , Mice , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Genome , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Zygote/metabolism
16.
EMBO Mol Med ; 16(3): 523-546, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374466

ABSTRACT

Huntington's disease (HD) is an incurable inherited disorder caused by a repeated expansion of glutamines in the huntingtin gene (Htt). The mutant protein causes neuronal degeneration leading to severe motor and psychological symptoms. Selective downregulation of the mutant Htt gene expression is considered the most promising therapeutic approach for HD. We report the identification of small molecule inhibitors of Spt5-Pol II, SPI-24 and SPI-77, which selectively lower mutant Htt mRNA and protein levels in HD cells. In the BACHD mouse model, their direct delivery to the striatum diminished mutant Htt levels, ameliorated mitochondrial dysfunction, restored BDNF expression, and improved motor and anxiety-like phenotypes. Pharmacokinetic studies revealed that these SPIs pass the blood-brain-barrier. Prolonged subcutaneous injection or oral administration to early-stage mice significantly delayed disease deterioration. SPI-24 long-term treatment had no side effects or global changes in gene expression. Thus, lowering mutant Htt levels by small molecules can be an effective therapeutic strategy for HD.


Subject(s)
Huntington Disease , Animals , Mice , Brain/metabolism , Corpus Striatum , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , Phenotype , RNA, Messenger/genetics
17.
Genome Biol ; 25(1): 19, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38225631

ABSTRACT

BACKGROUND: Neural tube defects (NTDs) are caused by genetic and environmental factors. ARMC5 is part of a novel ubiquitin ligase specific for POLR2A, the largest subunit of RNA polymerase II (Pol II). RESULTS: We find that ARMC5 knockout mice have increased incidence of NTDs, such as spina bifida and exencephaly. Surprisingly, the absence of ARMC5 causes the accumulation of not only POLR2A but also most of the other 11 Pol II subunits, indicating that the degradation of the whole Pol II complex is compromised. The enlarged Pol II pool does not lead to generalized Pol II stalling or a generalized decrease in mRNA transcription. In neural progenitor cells, ARMC5 knockout only dysregulates 106 genes, some of which are known to be involved in neural tube development. FOLH1, critical in folate uptake and hence neural tube development, is downregulated in the knockout intestine. We also identify nine deleterious mutations in the ARMC5 gene in 511 patients with myelomeningocele, a severe form of spina bifida. These mutations impair the interaction between ARMC5 and Pol II and reduce Pol II ubiquitination. CONCLUSIONS: Mutations in ARMC5 increase the risk of NTDs in mice and humans. ARMC5 is part of an E3 controlling the degradation of all 12 subunits of Pol II under physiological conditions. The Pol II pool size might have effects on NTD pathogenesis, and some of the effects might be via the downregulation of FOLH1. Additional mechanistic work is needed to establish the causal effect of the findings on NTD pathogenesis.


Subject(s)
Armadillo Domain Proteins , Neural Tube Defects , Spinal Dysraphism , Animals , Humans , Mice , Armadillo Domain Proteins/genetics , Folic Acid/metabolism , Mice, Knockout , Mutation , Neural Tube Defects/genetics , Neural Tube Defects/epidemiology , Spinal Dysraphism/genetics
18.
Int J Biol Macromol ; 254(Pt 2): 127881, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944716

ABSTRACT

The carboxyl terminal domain of the largest subunit of eukaryotic RNA polymerase II (RNAPII) consists of highly conserved tandem repeats of Tyr1Ser2Pro3Thr4Ser5Pro6Ser7, referred as CTD. The CTD undergoes posttranslational modifications where the interplay of kinases imparts specific CTD phosphorylations, recognized by regulatory proteins that help in the mRNA transcription. Here, the Ser5 phosphorylation (Ser5P) remains high during the transcription initiation, followed by the Ser2P which peaks towards the termination and the Ser7P remains high throughout the transcription process. The Paf1 elongation complex (Paf1C) through its Cdc73 subunit is recruited to the phosphorylated CTD and play active role during different stages of mRNA transcription. We show that the CTD binding domain of Cdc73 is an independent folding unit which interacts with the hyper phosphorylated CTD. The 500 ns MD simulation studies further identified the binding interface and the pattern of CTD phosphorylation involved in the interaction with Cdc73. The possible key residues were mutated and the subsequent pull down analysis suggests that the phosphorylated Ser2, Ser5 and Ser7 of the tandem CTD heptads interact respectively with Arg310, Arg268 and Arg300 of Cdc73. Our finding provides new insight for Cdc73 function during mRNA transcription.


Subject(s)
RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Transcription Factors/genetics , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Yeast ; 41(4): 186-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041485

ABSTRACT

Polyadenylation occurs at numerous sites within 3'-untranslated regions (3'-UTRs) but rarely within coding regions. How does Pol II travel through long coding regions without generating poly(A) sites, yet then permits promiscuous polyadenylation once it reaches the 3'-UTR? The cleavage/polyadenylation (CpA) machinery preferentially associates with 3'-UTRs, but it is unknown how its recruitment is restricted to 3'-UTRs during Pol II elongation. Unlike coding regions, 3'-UTRs have long AT-rich stretches of DNA that may be important for restricting polyadenylation to 3'-UTRs. Recognition of the 3'-UTR could occur at the DNA (AT-rich), RNA (AU-rich), or RNA:DNA hybrid (rU:dA- and/or rA:dT-rich) level. Based on the nucleic acid critical for 3'-UTR recognition, there are three classes of models, not mutually exclusive, for how the CpA machinery is selectively recruited to 3'-UTRs, thereby restricting where polyadenylation occurs: (1) RNA-based models suggest that the CpA complex directly (or indirectly through one or more intermediary proteins) binds long AU-rich stretches that are exposed after Pol II passes through these regions. (2) DNA-based models suggest that the AT-rich sequence affects nucleosome depletion or the elongating Pol II machinery, resulting in dissociation of some elongation factors and subsequent recruitment of the CpA machinery. (3) RNA:DNA hybrid models suggest that preferential destabilization of the Pol II elongation complex at rU:dA- and/or rA:dT-rich duplexes bridging the nucleotide addition and RNA exit sites permits preferential association of the CpA machinery with 3'-UTRs. Experiments to provide evidence for one or more of these models are suggested.


Subject(s)
Polyadenylation , RNA Polymerase II , 3' Untranslated Regions , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , DNA/metabolism
20.
Mol Cell ; 84(1): 80-93, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38103561

ABSTRACT

Cellular homeostasis is constantly challenged by a myriad of extrinsic and intrinsic stressors. To mitigate the stress-induced damage, cells activate transient survival programs. The heat shock response (HSR) is an evolutionarily well-conserved survival program that is activated in response to proteotoxic stress. The HSR encompasses a dual regulation of transcription, characterized by rapid activation of genes encoding molecular chaperones and concomitant global attenuation of non-chaperone genes. Recent genome-wide approaches have delineated the molecular depth of stress-induced transcriptional reprogramming. The dramatic rewiring of gene and enhancer networks is driven by key transcription factors, including heat shock factors (HSFs), that together with chromatin-modifying enzymes remodel the 3D chromatin architecture, determining the selection of either gene activation or repression. Here, we highlight the current advancements of molecular mechanisms driving transcriptional reprogramming during acute heat stress. We also discuss the emerging implications of HSF-mediated stress signaling in the context of physiological and pathological conditions.


Subject(s)
Proteostasis , Transcription Factors , Proteostasis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Heat-Shock Response/genetics , Molecular Chaperones/genetics , Chromatin/genetics , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL