Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065333

ABSTRACT

Recycled asphalt pavement (RAP) mixtures are widely adopted due to their significant economic and social benefits from utilizing pavement recycling materials. This study incorporates basalt fibers (BF) and polyester fibers (PF) into plant-mixed hot recycled asphalt mixtures to analyze their enhancement effects on the high-temperature, low-temperature, and fatigue performance at different RAP content levels. Additionally, the study investigates the impact of fiber and RAP additions on the compaction characteristics of the mixtures using gyratory compaction tests, aiming to increase the RAP content of plant-mixed hot recycled asphalt mixtures. Experimental results demonstrate that at 30% and 50% RAP content levels, basalt fibers exhibit more pronounced enhancement effects on the performance of recycled asphalt mixtures compared to polyester fibers. Incorporating basalt fibers increases the fracture energy of recycled asphalt mixtures by 8.63% and 13.9%, and improves fatigue life by 154% and 135%, respectively. Moreover, the addition of both types of fibers increases compaction difficulty, with polyester fibers showing a more significant influence on the compaction energy index (CEI).

2.
Article in English | MEDLINE | ID: mdl-39041956

ABSTRACT

The textile industry is under pressure to adopt sustainable production methods because its contribution to global warming is expected to rise by 50% by 2030. One solution is to increase the use of recycled raw material. The use of recycled raw material must be considered holistically, including its environmental and economic impacts. This study examined eight scenarios for sustainable denim fabric made from recycled polyethylene terephthalate (PET) fiber, conventional PET fiber, and cotton fiber. The evaluation based on the distance from average solution (EDAS) multicriteria decision-making method was used to rank scenarios according to their environmental and economic impacts, which are assessed using life cycle assessment and life cycle costing. Allocation, a crucial part of evaluating the environmental impact of recycled products, was done using cut-off and waste value. Life cycle assessments reveal that recycled PET fiber has lower freshwater ecotoxicity and fewer eutrophication and acidification impacts. Cotton outperformed PET fibers in human toxicity. Only the cut-off method reduces potential global warming with recycled PET. These findings indicated that recycled raw-material life cycle assessment requires allocation. Life cycle cost analysis revealed that conventional PET is less economically damaging than cotton and recycled PET. The scenarios were ranked by environmental and economic impacts using EDAS. This ranking demonstrated that sustainable denim fabric production must consider both economic and environmental impacts. Integr Environ Assess Manag 2024;00:1-19. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

3.
Int J Biol Macromol ; 262(Pt 2): 130138, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354930

ABSTRACT

Functional materials with under-liquid dual superlyophobicity have generated a great deal of concern from researchers due to their switchable separation ability oil-water mixtures and emulsions. Conceptually, under-liquid dual superlyophobicity is a Cassie state achievable under-liquid through the synergy of an under-liquid double lyophobic surface and the construction of a highly rough surface. However, obtaining an under-liquid dual superlyophobic surface remains difficult due to its thermodynamic contradiction and complex surface composition. Herein, we successfully prepared a functional coating by modifying the mixture of cellulose nanocrystals (CNCs) and nano-TiO2 with perfluorooctanoic acid (PFOA) via a simple method, then obtained a polyester fiber membrane with under-liquid dual superlyophobicity by roll coating method. The surface wettability of the polyester (PET) membrane was altered, transforming it from the original under-water oleophobic/under-oil superhydrophilic state to the under-water superoleophobic/under-oil superhydrophobic state after coated. The resulting membrane was applied to separate oil and water on-demand. The coated PET membrane exhibited high separation efficiency (>99 %) and high separation flux, effectively separating immiscible oil-water systems as well as oil-in-water and water-in-oil emulsions. The coated PET membrane also demonstrated the ability to perform alternate separation of oil-water mixtures through wetting, washing, and rewetting cycles, with repeated processes up to 10 times without significant reduction in separation efficiency. Furthermore, compared with the previous works, our approach offers a simpler and more convenient method for constructing under-liquid dual superlyophobic surface, making it more suitable for continuous corporate production. This study may provide inspiration for the production and application in large-scale of under-liquid dual superlyophobic membranes.


Subject(s)
Fabaceae , Nanoparticles , Cellulose , Polyesters , Thermodynamics
4.
Materials (Basel) ; 16(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959562

ABSTRACT

Technical challenges associated with the treatment of silt subgrades frequently arise in coastal and river delta areas. Given the importance of environmental sustainability, the selection of efficient, cost-effective, and eco-friendly techniques for silt subgrade stabilization is paramount. While recycled polyester fibers primarily sourced from discarded polyester bottles have not yet been systematically employed in silt subgrade reinforcement, their potential is considerable. This paper offers a comprehensive review of the existing literature on the microstructural, physicochemical, and mechanical properties of silt, summarizing prior advancements in silt stabilization methodologies. Building upon this foundation, we introduce a novel approach utilizing recycled polyester fibers for silt subgrade improvement, outlining both its application prospects and challenges, which require further investigation. The findings of this study serve as a robust scientific foundation for the broader adoption and engineering implementation of this technology.

5.
Polymers (Basel) ; 15(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38006090

ABSTRACT

The structural stability of silt foundations, particularly sensitive to moisture content, can be severely compromised by recurring wetting and drying processes. This not only threatens the foundational integrity but also raises grave concerns about the long-term safety of major civil engineering endeavors. Addressing this critical issue, our study delves into the transformative effects of reclaimed polyester fiber on subgrade silt exposed to such environmental stressors. Through rigorous wet-dry cycle tests on this enhanced soil, we evaluate shifts in shear strength across varying confining pressures. We also dissect the interplay between average pore diameter, particle distribution, and morphology in influencing the soil's microstructural responses to these cycles. A detailed analysis traces the structural damage timeline in the treated soil, elucidating the intertwined micro-macro dynamics driving strength reduction. Key discoveries indicate a notably non-linear trajectory of shear strength degradation, marked by distinct phases of rapid, subdued, and stabilized strength attrition. Alterations within the micropores induce a rise in both their count and size, ultimately diminishing the total volume proportion of the reinforced soil. Intriguingly, particle distribution is directly tied to the wet-dry cycle frequency, while the fractal dimension of soil particles consistently wanes. This research identifies cement hydrolysis and pore expansion as the dominant culprits behind the observed macroscopic strength degradation due to incessant wet-dry cycles. These revelations hold profound implications for risk management and infrastructural strategizing in areas dominated by silt foundations.

6.
Materials (Basel) ; 16(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37895645

ABSTRACT

In hot and humid climates, asphalt pavements frequently encounter environmental factors such as elevated temperatures and rainfall, leading to rutting deformations and potholes, which can affect pavement performance. The primary objective of this study was to enhance the hydrothermal characteristics of asphalt mixtures through an investigation into the impact of anhydrous calcium sulfate whisker (ACSW) and polyester fiber (PF) on the hydrothermal properties of asphalt mixtures. In this paper, a central composite concatenation design (CCC) was employed to determine the optimal combination of ACSW and PF contents, as well as the asphalt aggregate ratio (AAR). Each influencing factor was assigned three levels for analysis. The evaluation indexes included dynamic stability, retained Marshall stability, and tensile strength ratio. Using the analysis methods of variance and gray correlation degree analysis, the hydrothermal properties of the asphalt mixture were examined in relation to the contents of ACSW, PF, and AAR based on the CCC results. Consequently, the optimal mix design parameters for composite modified asphalt mixture incorporating ACSW and PF were determined. The results indicated that the asphalt mixtures with hydrothermal qualities exhibited optimal performance in terms of 4.1% ARR, 11.84% ACSW, and 0.4% PF. The interaction between AAR and ACSW content had a greater effect on the dynamic stability and tensile strength ratio of the asphalt mixture, whereas the incorporation of ACSW and PF had a greater effect on the retained Marshall stability of the asphalt mixture. Among the three contributing factors, AAR exhibited the strongest relationship with the hydrothermal characteristics of the asphalt mixture, followed by the ACSW content; the correlation of PF content was the lowest. Therefore, to enhance the hydrothermal characteristics of the asphalt mixture, it is important to conduct a full evaluation of the constituents of ACSW and PF, along with the AAR in hot-humid regions.

7.
Membranes (Basel) ; 13(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623803

ABSTRACT

An experimental laboratory set of samples of composite heterogeneous anion-exchange membranes was obtained by us for the development of our original method of polycondensation filling. Anion-exchange membranes were prepared on plasma-treated and non-plasma-treated polyester fiber fabrics. The fabric was treated with low-temperature argon plasma at a power of 400 W for 10 min at a pressure of 5 × 10-5 mbar. On the surface and bulk of the polyester fiber, a polyfunctional anionite of mixed basicity was synthesized and formed. The anion-exchange membrane contained secondary and tertiary amino groups and quaternary ammonium groups, which were obtained from polyethylene polyamines and epichlorohydrins. At the stage of the chemical synthesis of the anion matrix, oxidized nanoparticles (~1.5 wt.%) of silicon, nickel, and iron were added to the monomerization composition. The use of ion-plasma processing of fibers in combination with the introduction of oxidized nanoparticles at the synthesis stage makes it possible to influence the speed and depth of the synthesis and curing processes; this changes the formation of the surface morphology and the internal structure of the ion-exchange polymer matrix, as well as the hydrophobic/hydrophilic balance and-as a result-the different operational characteristics of anion-exchange membranes.

8.
Polymers (Basel) ; 15(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37514396

ABSTRACT

In this article, textured polyester fiber was used as pile yarn in three-dimensional woven carpet structures. The properties of developed polyester carpets under various mechanical loading were studied. A statistical method was used to analyze the experimental data. Regression models were proposed to explain the relationships between carpet pile height and density. The study showed that the bending rigidity and curvature of dry and wet polyester pile fiber carpets were influenced by pile height and pile density (indirectly weft density) in that the downward concave large bending curvature was obtained from very dense carpet structures. In addition, the average dry bending rigidity of the carpet was over eight times higher than the average wet bending rigidity of the carpet. The thickness loss (%) and resilience (%) for each recovery period of various polyester carpets were proportional depending on the pile density. It was broadly decreased when the pile density was increased due to the compression load carrying capacity per polyester fiber knot, which was higher in carpets having dense knots compared to sparse knots per area. On the other hand, the polyester pile density and height largely affected the carpet mass losses (%) of all textured polyester carpets under an abrasion load. The number of strokes received after completely fractured polyester pile yarns during a rubbing test were increased when the pile heights for each pile density were increased. Findings from the study can be useful for polyester carpet designers and three-dimensional dry or impregnate polyester fiber-based preform designers in particularly complex shape molding part manufacturing.

9.
Materials (Basel) ; 16(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37176351

ABSTRACT

The incorporation of crumb rubber (CR) into asphalt pavement materials can improve the performance of asphalt pavement and generate environmental benefits. However, the storage stability of the crumb rubber asphalt (CRA) remains an issue that needs to be resolved. This study explores the interaction laws among various modified materials based on the response surface methodology. Optimal preparation dosages of each material are determined, and performance predictions and validations are conducted. The storage stability of the CRA compounded with epoxidized soybean oil (ESO) and polyester fiber (PF) is investigated by combining traditional compatibility testing methods with refined characterization methods. The results indicate that the modification of CRA exhibits better rheological properties when the percentages of CR, PF, and ESO are 22%, 0.34%, and 3.21%, respectively. The addition of ESO effectively complements the light components of CRA to improve asphalt compatibility, and the addition of PF alleviates the adverse effects of ESO's softening effect on rheological properties through stabilization and three-dimensional strengthening. The scientifically compounded additions of ESO and PF can effectively enhance the storage stability and rheological properties of CRA, promoting the development of sustainable and durable roads.

10.
J Biomater Sci Polym Ed ; 34(12): 1758-1769, 2023 08.
Article in English | MEDLINE | ID: mdl-36799133

ABSTRACT

The purpose of this paper is to report on the preparation and improvement of a biocomposite material made from ultra-high molecular weight polyethylene for the replacement of natural discs. Such replacements are necessary due to intervertebral disc degradation as humans age, which can cause persistent pain due to nerve compression and high friction between vertebrae that can lead to vertebral corrosion. The material was shown to have excellent mechanical properties such as low coefficient of friction, and biocompatibility; however, it degraded with time due to wear failure. Moreover, The wear resistance was related to many factors, such as toughness.In the methodology of the current study, UHMWPE is reinforced with different percent of polyester (2, 4, 6, 8, 10%) to improve the mechanical properties of the polymer disc, thus enhancing its toughness and providing its high bearing ability for the load.The findings revealed that the tensile strength and modulus of elasticity improved by 43.415% and 34.286%, respectively, with the 6% polyester fibers due to the excellent entanglement between the matrix and reinforcing phase. The other mechanical properties, such as flexural strength and modulus, impact strength, fracture toughness, and compression strength, were also enhanced in this study. The highest value at 6% polyester fiber was found to be due to good bonding and adhesion between the polymer and polyester fibers. The Fourier Transformation Spectroscopy (FTIR) showed a shift on some peaks.The originality of this work is that the improvements due to the new bio-composite polymers for artificial implant cervical discs can open many applications in future for these materials.


Subject(s)
Polyesters , Polyethylenes , Humans , Materials Testing , Polyethylenes/chemistry , Polymers/chemistry
11.
Materials (Basel) ; 16(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36676331

ABSTRACT

In order to improve the properties of calcium sulfate anhydrous whisker (ACSW) and polyester fiber composite reinforced asphalt mixture (ACPRA) to meet the service requirements of pavement materials in low-temperature environments, the central composite circumscribed design (CCC), a kind of response surface methodology, was chosen to optimize the design parameters. Three independence variables, asphalt aggregate ratio, ACSW content, and polyester fiber content were adopted to evaluate the design parameters. Four responsive variables, air voids, Marshall stability, splitting tensile strength, and failure tensile strain, were chosen to study the volumetric and mechanical characteristics, and the low-temperature behavior of ACPRA by the Marshall test and indirect tensile test at -10 °C. The results showed that, taking low-temperature behavior optimization as the objective, the CCC method was practicable to optimize design of ACPRA, and the optimization design parameters were asphalt aggregate ratio of 4.0%, ACSW content of 10.8%, and polyester fiber content of 0.4%. Furthermore, the impact of three independence variables interactions on four response variables was also discussed, and it was identified that the interaction between asphalt aggregate ratio and ACSW content, and between asphalt aggregate ratio and polyester fiber content, has greater bearing on the splitting tensile strength and failure tensile strain of APCRA. Meanwhile, ACSW and polyester fiber enhancing the low-temperature behavior of APCRA was primarily connected with their contents.

12.
ACS Appl Mater Interfaces ; 14(41): 47003-47013, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36214495

ABSTRACT

Air pollution caused by bacteria and viruses has posed a serious threat to public health. Commercial air purifiers based on dense fibrous filters can remove particulate matter, including airborne pathogens, but do not kill them efficiently. Here, we developed a double-grafted antibacterial fiber material for the high-efficiency capture and inactivation of airborne microorganisms. Tetracarboxyl phthalocyanine zinc, a photosensitizer, was first grafted onto the polyester (PET) fiber, followed by coating with chitosan on the surface of PET fiber to make a double-grafted fiber material. Under the irradiation of light with a specific wavelength (680 nm), double-grafted fiber materials killed up to 99.99% of Gram-positive bacteria and Gram-negative bacteria and had a significant antibacterial effect on drug-resistant bacteria. The double-grafted PET fiber showed broad-spectrum antibacterial activities and was capable to inactivate drug-resistant bacteria. Notably, in filtration experiments for airborne bacteria, this double-grafted PET fiber demonstrated a high bacteria capture efficiency (95.68%) better than the untreated PET fiber (64.87%). Besides, the double-grafted PET fiber was capable of efficiently killing airborne bacteria. This work provides a new idea for the development of air filtration materials that can efficiently kill airborne pathogen and has good biosafety.


Subject(s)
Chitosan , Polyesters , Photosensitizing Agents/pharmacology , Particulate Matter , Bacteria , Anti-Bacterial Agents/pharmacology , Zinc , Positron-Emission Tomography
13.
Polymers (Basel) ; 14(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956624

ABSTRACT

To improve the performance and application value of recycled plastics, filling modification has been widely used in waste plastic reinforcement. In this study, recycled polyethylene (RPE) was reinforced via extrusion blending using waste polyester fiber (WPF) from a waste silk wadding quilt as a reinforcer. The effects of the amount of WPF on the mechanical properties, the thermal stability of RPE and the microstructure of the RPE/WPF composite were studied. The result shows that extrusion blending can evenly disperse WPF in RPE matrix and that WPF can clearly improve the tensile strength, flexural modulus, storage modulus and thermal stability of RPE. The tensile strength and flexural modulus almost achieved the maximum when the addition of WPF was 20 wt%. The storage modulus under this condition is also higher than that of other samples. This study provides a cheap and effective reinforcement method for waste plastics as well as a new idea for the reuse of WPF, which is of great significance to the reuse of waste and environmental protection. However, how to enhance the interface adhesion between WPF and RPE to further improve the enhancement effect needs further research.

14.
Materials (Basel) ; 15(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160912

ABSTRACT

The growing importance of the domestic aquaculture industry has led not only to its continuous development and expansion but also to an increase in the production of wastewater containing pathogenic microorganisms and antibiotic-resistant bacteria. As the existing water purification facilities have a high initial cost of construction, operation, and maintenance, it is necessary to develop an economical solution. Graphene oxide (GO) is a carbon-based nanomaterial that is easy to manufacture, inexpensive and has excellent antimicrobial properties. In this study, the antimicrobial effect of GO polyester fibers on seven species of fish pathogenic bacteria was analyzed to evaluate their effectiveness in water treatment systems and related products. As a result of incubating GO polyester fibers with seven types of fish pathogenic bacteria for 1, 6, and 12 h, there was no antimicrobial effect in Vibrio harveyi, V. scopthalmi, and Edwardsiella tarda. In contrast, GO fibers showed antimicrobial effects of more than 99% against A. hydrophila, S. parauberis, S. iniae, and P. piscicola, suggesting the potential use of GO fibers in water treatment systems.

15.
Sci Total Environ ; 819: 153077, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35038536

ABSTRACT

Microplastic fibers are frequent anthropogenic contaminants in most aquatic environments and have consequently been detected in the digestive tract of many fish species. Upon ingestion, microplastic fibers pose risks of interference with nutrient uptake, impaired intestinal health, and as a consequence may alter growth performance and fitness. In addition, foreign particles such as fibers might cause tissue irritations and stress, and thus interfere with immune parameters. In nature, fish regularly encounter microplastic fibers as well as fiber debris from natural sources and materials. Thus, we wanted to test the potential impact of microplastic fibers on growth, organosomatic indices, and immune parameters of subadult fish and compare these to possible effects caused by natural fibers. We administered sticklebacks diets, which were supplemented with either polyester or cotton fibers (each at concentrations of 0.2 mg/g and 2 mg/g feed) or a control diet without fiber supplementation for nine weeks. Mortalities did not occur and sticklebacks grew equally well across treatments. Neither organosomatic indices nor immune parameters revealed significant differences between treatments. While natural differences between males and females were observed for some parameters, no treatment-related gender-specific effects were detected. Our results suggest that the dietary uptake of polyester fibers does not affect growth, body condition, gonad development, and immunity of sticklebacks - even at fiber concentrations higher than what can be encountered in the wild. Furthermore, virgin microplastic fibers do not seem to affect fish differently than fibers from natural origin. The present study implies that at least some species are resilient towards pollution with (virgin) microplastic fibers even at high concentrations.


Subject(s)
Smegmamorpha , Water Pollutants, Chemical , Animals , Dietary Exposure , Environmental Monitoring , Microplastics , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
16.
Chemosphere ; 288(Pt 1): 132413, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34600006

ABSTRACT

There is an increasing recognition that microplastics contamination in soils has become an important threat for terrestrial ecosystems, and can interact with drought. In addition, due to the increasingly serious environmental pollution and the destruction of the ozone layer, the UV-B radiation to the earth's surface has gradually increased. However, we currently have no information about potential effects of microplastics, UV-B, and drought on plant communities. In order to make up for the vacancy, we conducted an experiment with grassland plant communities. Polyester fiber microplastics (absent, present), UV-B (fully transparent polythene film, attenuating UV-B radiation), and soil water conditions (well-watered, drought) were applied in a fully factorial design. A plant community consisting of four indigenous species and one invasive species, co-occurring in the terrestrial ecosystem of the northern temperate zone was established, and we investigated the effects of microplastics, UV-B, drought and their interactions on plant functional traits and plant community structure. We found that shoot and root biomass decreased with drought but increased with microfibers, and drought significantly decreased specific leaf area at the community level. Physiological and biochemical indexes of individual species and plant community were affected by microfibers, UV-B, drought and their interaction to a varying degree. More importantly, five species were divided into three clusters along PC1 corresponding to individuals from G. longituba and P. depressa, B. bipinnata and M. sativa, plus G. parviflora, which indicated that at the same conditions, G. parviflora would occupy unique ecological niches that affect the growth of native species. Our research offers insights into the mechanisms of the coexistence of native and invasive plants, as well as the ecological consequences of microplastics and other environment factors on plant communities.


Subject(s)
Droughts , Ecosystem , Humans , Plants , Plastics , Ultraviolet Rays
17.
MethodsX ; 8: 101204, 2021.
Article in English | MEDLINE | ID: mdl-34434727

ABSTRACT

Ingestion of microplastic particles and fibers is frequently reported for aquatic organisms collected in the field. At the same time, only few studies investigate potential effects of ingestion of microplastic fibers due to handling issues in the laboratory. Exposure studies, which provide organisms with microplastic fibers via the diet, are a necessary step to analyze impact thresholds of vital and fitness parameters of aquatic organisms. Based on the limited number of studies providing fish with fiber-supplemented pellets, the following protocol presents a way to prepare a diet for fish that is supplemented with homogeneous distributed microplastic fibers for exposure studies. Produced pellets are suitable for small experimental fish, such as sticklebacks (2-5 cm), and can be manufactured up to amounts of several hundred grams and even few kilograms. The method can be adapted to different commercial fish feeds and microplastic fiber types due to manual preparation.•Low-cost, manual preparation of microplastic fibers•Preparation of a pelleted fish diet with uniformly distributed fibers•Adaptable to different commercial fish feeds and microplastic fiber types.

18.
Materials (Basel) ; 14(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070482

ABSTRACT

Utilizing textile-based acoustic materials can be considered basically from two points of view. First, it may be used as a sound absorbing material. Second, it may be used as a decoration that gives the surrounding area a new artistic appearance. To improve the acoustic possibilities of any woven fabric, it is necessary to study the influences of yarn characteristics and the internal structures of weave interlacement. To understand the impact of the yarn on the fabric, the samples were prepared using only polyester fiber as textured, twisted, and staple yarns. Regarding this experiment, the basic weave's structure type, such as plain, rib, sateen, and twill, were used. Overall, 16 woven fabrics were prepared. The investigation was performed in the range of low to medium acoustic frequencies. The experiments were conducted in an anechoic chamber. Compared to other yarn types, fabrics formed from textured polyester yarn had higher sound absorption properties. Moreover, the observed results show that the different incidence angles of acoustic signals influence the measured sound absorption properties of a textile.

19.
Materials (Basel) ; 14(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800697

ABSTRACT

Textile materials produced from a high tenacity industrial polyester fiber are most widely used in the mechanical rubber goods industry to reinforce conveyor belts, tire cords, and hoses. Reinforcement of textile rubber undergoes a vulcanization process to adhere the textile materials with the rubber and to enhance the physio-mechanical properties of the product. The vulcanization process has an influence on the textile material being used as a reinforcement. In this work, the effects of aging temperature and time on the high tenacity polyester yarn's mechanical and surface structural properties were investigated. An experiment was carried out on a pre-activated high tenacity polyester yarn of different linear densities, by aging the yarn specimens under various aging temperatures of 140, 160, 200, and 220 °C for six, twelve, and thirty-five minutes of aging time. The tensile properties and surface structural change in the yarns pre- and post-aging were studied. The investigation illustrates that aging time and temperature influence the surface structure of the fiber, tenacity, and elongation properties of the yarn. Compared to unaged yarn, an almost five times higher percentage of elongation was obtained for the samples aged at 220 °C for 6 min, while the lowest tenacity was obtained for the sample subjected to aging under 220 °C for 35 min.

20.
J Agric Food Chem ; 69(11): 3537-3547, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33721998

ABSTRACT

The rapid and onsite detection of glyphosate herbicides in agricultural products is still a challenge. Herein, a novel colorimetric nanozyme sheet for the rapid detection of glyphosate has been successfully prepared through the physical adsorption of porous Co3O4 nanoplates on a polyester fiber membrane. Glyphosate can specifically inhibit the peroxidase-mimicking catalytic activity of porous Co3O4 nanoplates, thereby the visual detection of glyphosate can be realized by distinguishing the change in the color intensity of the established nanozyme sheet. The prepared nanozyme sheet has good sensitivity and selectivity, with a detection limit of 0.175 mg·kg-1 for glyphosate detection just by the naked eyes. It can effectively detect glyphosate within 10 min, and the color spots can maintain more than 20 min. The nanozyme sheet is not easily affected by the external environment in detection and storage. The merits of the nanozyme sheet facilitate its practical application in the large-scale preliminary screening of glyphosate residues in agricultural products.


Subject(s)
Colorimetry , Peroxidase , Glycine/analogs & derivatives , Peroxidases , Porosity , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL