Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Pharm ; 607: 120961, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34333026

ABSTRACT

One of the very reliable, attractive, and cheapest techniques for synthesizing nanofibers for biomedical applications is electrospinning. Here, we have created a novel nanofibrous composite coated Ti plate to mimic an Extra Cellular Matrix (ECM) of native bone in order to enhance the bone tissue regeneration. An electrospun fibrous composite was obtained by the combination of minerals (Zn, Mg, Si) substituted hydroxyapatite (MHAP)/Polyethylene Glycol (PEG)/Cissus quadrangularis (CQ) extract. Fibrous composite's functionality, phase characteristics, and morphology were evaluated by FT-IR, XRD, and SEM techniques, respectively. The average fiber diameter of MHAP/PVA had decreased from ~274 to ~255 nm after incorporating PEG polymer. That further increased from ~255 to ~275 nm after adding CQ extract. Besides the bioactivity in SBF solution, the degradable nature was confirmed by immersing the fibrous composite in Tris-HCL solution. The degradable studies evaluate that the composite was degraded depending on time, and it degrades about 9.42% after 7 days of immersion. Osteoblasts like MG-63 cells differentiation, proliferation, and calcium deposition were also determined. These results show that this new fibrous composite exhibits advanced osteoblasts properties. Thus, we concluded that this new fibrous scaffold coated Ti implant could act as a better implant to mimic ECM of bone structure and to improve osteogenesis during bone regeneration.


Subject(s)
Nanofibers , Titanium , Bone Regeneration , Bone and Bones , Cell Proliferation , Durapatite , Osteoblasts , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL