Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Z Med Phys ; 33(1): 22-34, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36446691

ABSTRACT

Pioneering investigations on the usage of positron-emission-tomography (PET) for the monitoring of ion beam therapy with light (protons, helium) and heavier (stable and radioactive neon, carbon and oxygen) ions started shortly after the first realization of planar and tomographic imaging systems, which were able to visualize the annihilation of positrons resulting from irradiation induced or implanted positron emitting nuclei. And while the first clinical experience was challenged by the utilization of instrumentation directly adapted from nuclear medicine applications, new detectors optimized for this unconventional application of PET imaging are currently entering the phase of (pre)clinical testing for more reliable monitoring of treatment delivery during irradiation. Moreover, recent advances in detector technologies and beam production open several new exciting opportunities which will not only improve the performance of PET imaging under the challenging conditions of in-beam applications in ion beam therapy, but will also likely expand its field of application. In particular, the combination of PET and Compton imaging can enable the most efficient utilization of all possible radiative emissions for both stable and radioactive ion beams, while positronium lifetime imaging may enable probing new features of the underlying tumour and normal tissue environment. Thereby, PET imaging will not only provide means for volumetric reconstruction of the delivered treatment and in-vivo verification of the beam range, but can also shed new insights for biological optimization of the treatment or treatment response assessment.


Subject(s)
Positron-Emission Tomography , Protons , Ions , Electrons , Phantoms, Imaging
2.
Front Physiol ; 13: 996985, 2022.
Article in English | MEDLINE | ID: mdl-36299260

ABSTRACT

This review introduce extracellular vesicles (EVs) to a molecular imaging field. The idea of modern analyses based on the use of omics studies, using high-throughput methods to characterize the molecular content of a single biological system, vesicolomics seems to be the new approach to collect molecular data about EV content, to find novel biomarkers or therapeutic targets. The use of various imaging techniques, including those based on radionuclides as positron emission tomography (PET) or single photon emission computed tomography (SPECT), combining molecular data on EVs, opens up the new space for radiovesicolomics-a new approach to be used in theranostics.

3.
PET Clin ; 15(4): 439-452, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32739047

ABSTRACT

Total-body PET opens a new diagnostic paradigm with prospects for personalized disease treatment, yet the high cost of the current crystal-based PET technology limits dissemination of total-body PET in hospitals and even in research clinics. The J-PET tomography system is based on axially arranged low-cost plastic scintillator strips. It constitutes a realistic cost-effective solution of a total-body PET for broad clinical applications. High sensitivity of total-body J-PET and triggerless data acquisition enable multiphoton imaging, opening possibilities for multitracer and positronium imaging, thus promising quantitative enhancement of specificity in cancer and inflammatory disease assessment.


Subject(s)
Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Whole Body Imaging/methods , Humans , Plastics
4.
EJNMMI Phys ; 7(1): 44, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32607664

ABSTRACT

PURPOSE: In living organisms, the positron-electron annihilation (occurring during the PET imaging) proceeds in about 30% via creation of a metastable ortho-positronium atom. In the tissue, due to the pick-off and conversion processes, over 98% of ortho-positronia annihilate into two 511 keV photons. In this article, we assess the feasibility for reconstruction of the mean ortho-positronium lifetime image based on annihilations into two photons. The main objectives of this work include the (i) estimation of the sensitivity of the total-body PET scanners for the ortho-positronium mean lifetime imaging using 2γ annihilations and (ii) estimation of the spatial and time resolution of the ortho-positronium image as a function of the coincidence resolving time (CRT) of the scanner. METHODS: Simulations are conducted assuming that radiopharmaceutical is labeled with 44Sc isotope emitting one positron and one prompt gamma. The image is reconstructed on the basis of triple coincidence events. The ortho-positronium lifetime spectrum is determined for each voxel of the image. Calculations were performed for cases of total-body detectors build of (i) LYSO scintillators as used in the EXPLORER PET and (ii) plastic scintillators as anticipated for the cost-effective total-body J-PET scanner. To assess the spatial and time resolution, the four cases were considered assuming that CRT is equal to 500 ps, 140 ps, 50 ps, and 10 ps. RESULTS: The estimated total-body PET sensitivity for the registration and selection of image forming triple coincidences (2γ+γprompt) is larger by a factor of 13.5 (for LYSO PET) and by factor of 5.2 (for plastic PET) with respect to the sensitivity for the standard 2γ imaging by LYSO PET scanners with AFOV = 20 cm. The spatial resolution of the ortho-positronium image is comparable with the resolution achievable when using TOF-FBP algorithms already for CRT = 50 ps. For the 20-min scan, the resolution better than 20 ps is expected for the mean ortho-positronium lifetime image determination. CONCLUSIONS: Ortho-positronium mean lifetime imaging based on the annihilations into two photons and prompt gamma is shown to be feasible with the advent of the high sensitivity total-body PET systems and time resolution of the order of tens of picoseconds.

SELECTION OF CITATIONS
SEARCH DETAIL