Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
EMBO Rep ; 24(5): e55760, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36938994

ABSTRACT

Mitochondria play central roles in cellular energy production and metabolism. Most proteins required to carry out these functions are synthesized in the cytosol and imported into mitochondria. A growing number of metabolic disorders arising from mitochondrial dysfunction can be traced to errors in mitochondrial protein import. The mechanisms underlying the import of precursor proteins are commonly studied using radioactively labeled precursor proteins imported into purified mitochondria. Here, we establish a fluorescence-based import assay to analyze protein import into mitochondria. We show that fluorescently labeled precursors enable import analysis with similar sensitivity to those using radioactive precursors, yet they provide the advantage of quantifying import with picomole resolution. We adapted the import assay to a 96-well plate format allowing for fast analysis in a screening-compatible format. Moreover, we show that fluorescently labeled precursors can be used to monitor the assembly of the F1 F0 ATP synthase in purified mitochondria. Thus, we provide a sensitive fluorescence-based import assay that enables quantitative and fast import analysis.


Subject(s)
Mitochondria , Protein Precursors , Fluorescence , Protein Transport , Protein Precursors/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism
2.
Methods Mol Biol ; 2276: 441-452, 2021.
Article in English | MEDLINE | ID: mdl-34060060

ABSTRACT

Most mitochondrial proteins are encoded by the nuclear genome, synthesized in the cytosol, and imported into the organelle. Mitochondrial protein import is therefore vital for the maintenance of mitochondrial function and cell survival. Alterations in this process are suspected to contribute to various diseases, including neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Our understanding of the cytosolic signaling mechanisms and posttranslational modifications regulating the mitochondrial import process is still in its infancy and hampered by the lack of tools for its dynamic assessment in cells. We recently engineered an inducible molecular biosensor for monitoring one of the main mitochondrial import routes, the so-called presequence pathway, using a quantitative luminescence-based readout. Here, we provide basic guidelines for using this probe in common cell types of general use in the scientific community: HEK293T cells, human fibroblasts, and mouse primary neurons. These guidelines can serve as a starting point for the development of more elaborated protocols for the dynamic investigation of the presequence import pathway and its regulation in relevant physiological and pathological conditions.


Subject(s)
Biosensing Techniques/methods , Luciferases, Renilla/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Animals , Cells, Cultured , Green Fluorescent Proteins/metabolism , Humans , Mice
3.
Front Physiol ; 12: 806426, 2021.
Article in English | MEDLINE | ID: mdl-35069261

ABSTRACT

The vast majority of mitochondrial proteins are encoded in the nuclear genome and synthesized on cytosolic ribosomes as precursor proteins with specific mitochondrial targeting signals. Mitochondrial targeting signals are very diverse, however, about 70% of mitochondrial proteins carry cleavable, N-terminal extensions called presequences. These amphipathic helices with one positively charged and one hydrophobic surface target proteins to the mitochondrial matrix with the help of the TOM and TIM23 complexes in the outer and inner membranes, respectively. Translocation of proteins across the two mitochondrial membranes does not take place independently of each other. Rather, in the intermembrane space, where the two complexes meet, components of the TOM and TIM23 complexes form an intricate network of protein-protein interactions that mediates initially transfer of presequences and then of the entire precursor proteins from the outer to the inner mitochondrial membrane. In this Mini Review, we summarize our current understanding of how the TOM and TIM23 complexes cooperate with each other and highlight some of the future challenges and unresolved questions in the field.

4.
J Mol Biol ; 432(10): 3326-3337, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32277989

ABSTRACT

In the intermembrane space (IMS) of mitochondria, the receptor domain of Tim23 has an essential role during translocation of hundreds of different proteins from the cytosol via the TOM and TIM23 complexes in the outer and inner membranes, respectively. This intrinsically disordered domain, which can even extend into the cytosol, was shown, mostly in vitro, to interact with several subunits of the TOM and TIM23 complexes. To obtain molecular understanding of this organizational hub in the IMS, we dissected the IMS domain of Tim23 in vivo. We show that the interaction surface of Tim23 with Tim50 is larger than previously thought and reveal an unexpected interaction of Tim23 with Pam17 in the IMS, impairment of which influences their interaction in the matrix. Furthermore, mutations of two conserved negatively charged residues of Tim23, close to the inner membrane, prevented dimerization of Tim23. The same mutations increased exposure of Tim23 on the mitochondrial surface, whereas dissipation of membrane potential decreased it. Our results reveal an intricate network of Tim23 interactions in the IMS, whose influence is transduced across two mitochondrial membranes, ensuring efficient translocation of proteins into mitochondria.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mutation , Binding Sites , Mitochondrial Membrane Transport Proteins/genetics , Models, Molecular , Protein Binding , Protein Domains , Protein Transport , Protein Unfolding
5.
Biol Chem ; 401(6-7): 709-721, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32074073

ABSTRACT

Mitochondrial precursor proteins with amino-terminal presequences are imported via the presequence pathway, utilizing the TIM23 complex for inner membrane translocation. Initially, the precursors pass the outer membrane through the TOM complex and are handed over to the TIM23 complex where they are sorted into the inner membrane or translocated into the matrix. This handover process depends on the receptor proteins at the inner membrane, Tim50 and Tim23, which are critical for efficient import. In this review, we summarize key findings that shaped the current concepts of protein translocation along the presequence import pathway, with a particular focus on the precursor handover process from TOM to the TIM23 complex. In addition, we discuss functions of the human TIM23 pathway and the recently uncovered pathogenic mutations in TIM50.


Subject(s)
Carrier Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Humans , Mitochondrial Precursor Protein Import Complex Proteins , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL