Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 658: 124223, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38744413

ABSTRACT

This study aimed to microencapsulate the probiotic strain Lactiplantibacillus plantarum 4S6R (basonym Lactobacillus plantarum) in both microcapsules and microspheres by prilling/vibration technique. A specific polymeric mixture, selected for its responsiveness to parallel colonic stimuli, was individuated as a carrier of microparticles. Although the microspheres were consistent with some critical quality parameters, they showed a low encapsulation efficiency and were discarded. The microcapsules produced demonstrated high yields (97.52%) and encapsulation efficiencies (90.06%), with dimensional analysis and SEM studies confirming the desired size morphology and structure. The results of thermal stress tests indicate the ability of the microcapsules to protect the probiotic. Stability studies showed a significant advantage of the microcapsules over non-encapsulated probiotics, with greater stability over time. The release study under simulated gastrointestinal conditions demonstrated the ability of the microcapsules to protect the probiotics from gastric acid and bile salts, ensuring their viability. Examination in a simulated faecal medium revealed the ability of the microcapsules to release the bacteria into the colon, enhancing their beneficial impact on gut health. This research suggests that the selected mixture of reactive polymers holds promise for improving the survival and efficacy of probiotics in the gastrointestinal tract, paving the way for the development of advanced probiotic products.


Subject(s)
Capsules , Colon , Lactobacillus plantarum , Microspheres , Probiotics , Probiotics/administration & dosage , Colon/microbiology , Colon/metabolism , Bile Acids and Salts/chemistry , Drug Compounding/methods , Drug Liberation , Particle Size , Drug Delivery Systems/methods , Gastric Acid/chemistry , Gastric Acid/metabolism , Drug Stability , Feces/microbiology
2.
J Pharm Sci ; 113(7): 1726-1748, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38582283

ABSTRACT

The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.


Subject(s)
Microfluidics , Printing, Three-Dimensional , Humans , Child , Microfluidics/methods , Dosage Forms , Technology, Pharmaceutical/methods , Pediatrics/methods , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/administration & dosage , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Solubility
3.
Int J Pharm ; 651: 123762, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38185338

ABSTRACT

Prilling/vibration technique to produce oral microcapsules was explored to achieve local delivery of misoprostol (MIS), a prostaglandin E1 analogue indicated for the treatment of gastric-duodenal ulcers, at the gastric mucosa. To improve MIS chemical stability and reduce its associated systemic side effects, drug delivery systems were designed and developed as microcapsules consisting of a core of sunflower oil and MIS (Fs6 and Fs14) or a MIS complex with hydroxypropyl-beta-cyclodextrin (HP-ß-CD) (Fs18), confirmed by specific studies, and a polymeric shell. The produced microcapsules showed high encapsulation efficiencies for those with MIS solubilized in sunflower oil (>59.86 %) and for the microcapsules with MIS/HP-ß-CD (97.61 %). To demonstrate the ability of these systems to deliver MIS into the stomach, swelling and drug release experiments were also conducted in simulated gastric fluid. Among the three formulations, FS18 showed gastric release within 30 min and was the most advantageous formulation because the presence of the MIS/HP-ß-CD inclusion complex ensured a greater ability to stabilise MIS in the simulated gastric environment. In addition, these new systems have a small size (<540 µm), and good flow properties and the dose of the drug could be easily adapted using different amounts of microcapsules (flexibility), making them a passepartout for different age population groups.


Subject(s)
Misoprostol , 2-Hydroxypropyl-beta-cyclodextrin , Capsules , Sunflower Oil , Vibration , Drug Delivery Systems , Stomach , Solubility
4.
Gels ; 9(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37367162

ABSTRACT

The production of aerogels for different applications has been widely known, but the use of polysaccharide-based aerogels for pharmaceutical applications, specifically as drug carriers for wound healing, is being recently explored. The main focus of this work is the production and characterization of drug-loaded aerogel capsules through prilling in tandem with supercritical extraction. In particular, drug-loaded particles were produced by a recently developed inverse gelation method through prilling in a coaxial configuration. Particles were loaded with ketoprofen lysinate, which was used as a model drug. The core-shell particles manufactured by prilling were subjected to a supercritical drying process with CO2 that led to capsules formed by a wide hollow cavity and a tunable thin aerogel layer (40 µm) made of alginate, which presented good textural properties in terms of porosity (89.9% and 95.3%) and a surface area up to 417.0 m2/g. Such properties allowed the hollow aerogel particles to absorb a high amount of wound fluid moving very quickly (less than 30 s) into a conformable hydrogel in the wound cavity, prolonging drug release (till 72 h) due to the in situ formed hydrogel that acted as a barrier to drug diffusion.

5.
Materials (Basel) ; 16(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37048906

ABSTRACT

In the process of preparing asphalt-based spherical activated carbon, the molten asphalt must be formed into qualified spherical particles through the granulation process. Taking the process of molten asphalt granulation as the research direction, this paper carries out an asphalt rotational viscosity experiment and a thermogravimetric differential thermal experiment (TG-DSC), and obtains the optimal temperature and viscosity values for the asphalt granulation process. The fluent module in ANSYS software is used to input the known asphalt and prilling tower parameters. Based on the asphalt prilling principle, the thermal environment in the prilling tower during on-site melting and asphalt prilling is simulated. The results show that No. 70 matrix asphalt has good fluidity at 135 °C, and that, subsequently, the viscosity of the asphalt is stable and the fluidity of asphalt remains good with the increase in temperature; they also showed that the air velocity is fastest in the central area of the prilling tower, the air temperature is the highest at the top of the tower, and the air temperature in the central area is the lowest at the same height. Finally, a new approach to the granulation process of pitch-based spherical activated carbon is developed, which provides a reference for the basic experimental data and numerical simulation direction for the use of granulation towers to complete the granulation of molten asphalt in industry in the future.

6.
Carbohydr Polym ; 302: 120422, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36604084

ABSTRACT

The purpose of this study was to develop an oral paediatric formulation of budesonide (BUD) for the treatment of inflammatory bowel disease. A formulation realized as microspheres using the prilling/vibration technique is proposed as an innovative drug delivery system ensuring BUD-specific colonic release in response to different triggers, such as pH, transit time, and resident microbiota. BUD, or the inclusion complex BUD/hydroxypropyl-ß-cyclodextrin, was loaded into microspheres consisting of different ratios of alginate, Eudragit® FS 30D, with or without inulin. Sixteen formulations are produced that show high yields and encapsulation efficiencies, ensuring a homogenous distribution of BUD into the matrix. Microsphere diameters of <655 µm and promising flow properties make these systems suitable for oral administration to children. Swelling and drug release studies in simulated gastrointestinal fluid are used to demonstrate the response of microspheres to time and pH triggers. Studies in faecal medium highlight that drug release from microspheres with inulin is also influenced by microbiota.


Subject(s)
Budesonide , Inulin , Humans , Child , Microspheres , Drug Delivery Systems/methods , Polymethacrylic Acids/chemistry , Colon , Hydrogen-Ion Concentration , Particle Size
7.
Int J Pharm ; 599: 120412, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33662467

ABSTRACT

Natural oils that are rich in biologically active polyunsaturated fatty acids have many health benefits but have insufficient bioavailability and may oxidize in the gastrointestinal tract. For these reasons and to improve the handling as well, the possibility of incorporating a natural oil, extracted from Serenoa Repens fruits (SR-oil), in alginate-based beads was investigated. SR-oil has been used from centuries in both traditional and modern medicine for various nutraceutical or therapeutic purposes such as, in both sexes, as a general tonic, for genitourinary problems, to increase sexual vigor, as a diuretic or to treat in male lower urinary tract symptoms and benign prostatic hyperplasia. In this study, alginate-based beads prepared by vibration technology, also known as prilling technique, were explored as SR-oil delivery systems. Twenty-seven different formulations (F1-F27) were produced starting from stable emulsions for the period of the production. The formulations having spheroid shape (sfericity factor <0.07), high formulation yield (>90%) and high encapsulation efficiency (EE% > 80) were selected for further characterizations. Gas chromatographic analysis revealed a high loading of lauric acid as principal component of SR-oil allowing to calculate the content of total fatty acids (>50%) into the beads. Swelling behavior and release features were also studied at different pH values. The swelling of the beads and their SR-oil release were negligible for the first 2 h in simulated gastric fluid (pH 1.2), and appreciable in simulated intestinal fluid (pH 6.8). The release data were fitted by various equations to define the release kinetic mechanism. In addition, the selected formulation (F16) was stable to the oxidation not only during the formulation process, but also after 3 months of storage at room temperature. In summary, these polynucleate alginate beads, produced by prilling technique, are promising systems for improving the intestinal specific delivery and bioavailability of health-promoting bioactive SR-oil.


Subject(s)
Alginates , Serenoa , Glucuronic Acid , Hexuronic Acids , Humans , Intestines , Male , Oils
8.
Molecules ; 25(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664256

ABSTRACT

Polysaccharide-based hydrogel particles (PbHPs) are very promising carriers aiming to control and target the release of drugs with different physico-chemical properties. Such delivery systems can offer benefits through the proper encapsulation of many drugs (non-steroidal and steroidal anti-inflammatory drugs, antibiotics, etc) ensuring their proper release and targeting. This review discusses the different phases involved in the production of PbHPs in pharmaceutical technology, such as droplet formation (SOL phase), sol-gel transition of the droplets (GEL phase) and drying, as well as the different methods available for droplet production with a special focus on prilling technique. In addition, an overview of the various droplet gelation methods with particular emphasis on ionic cross-linking of several polysaccharides enabling the formation of particles with inner highly porous network or nanofibrillar structure is given. Moreover, a detailed survey of the different inner texture, in xerogels, cryogels or aerogels, each with specific arrangement and properties, which can be obtained with different drying methods, is presented. Various case studies are reported to highlight the most appropriate application of such systems in pharmaceutical field. We also describe the challenges to be faced for the breakthrough towards clinic studies and, finally, the market, focusing on the useful approach of safety-by-design (SbD).


Subject(s)
Hydrogels/chemistry , Polysaccharides/chemistry , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Porosity , Technology, Pharmaceutical/methods
9.
Int J Pharm ; 576: 119036, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31953083

ABSTRACT

Prilling by ultrasonic jet break-up is an efficient process to produce perfectly spherical microparticles homogeneous in size. However, the material properties could affect the manufacturability and the final product properties especially with lipid-based excipients which often exhibit complex structural properties. This work presents the characterisation of six lipid-based excipients differing by their melting point and polymorphic behaviour which were used to produce microspheres using a pilot-scale prilling equipment. The experimental results were compared to theoretical calculations, especially the droplet solidification time which is a key-parameter for this process. This work highlighted that monotropic polymorphism of excipients and supercooling effect have a significant impact on process parameters which should be considered with care during formulation design.


Subject(s)
Excipients/chemistry , Lipids/chemistry , Technology, Pharmaceutical , Crystallization , Drug Compounding , Hydrophobic and Hydrophilic Interactions , Kinetics , Lipid Droplets , Models, Chemical , Particle Size , Transition Temperature , Ultrasonics
10.
Int J Pharm ; 576: 119022, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31926276

ABSTRACT

Current study screened additives which could modify the drug release from prills made of an active pharmaceutical ingredient/fatty acid (API/FA) suspension, without negatively influencing the processability and/or stability of the formulation. Therefore, 11 additives (i.e. emulsifiers, pore-formers and FA-based lubricants) were added in a 20% concentration to a paracetamol/behenic acid formulation. Two additives, Kolliphor® P338 and P407 provided complete drug release in less than 1 h, as their thermoreversible gel formation resulted in a disintegration of the prills. Lower Kolliphor® P338 or P407 concentrations (2.5-10%) resulted in a complete but slower drug release in 24 h as the prills no longer disintegrated and the release mechanism was dominated by pore-formation. Prills with a robust drug release profile (i.e. independent of pH and surfactant concentration of the dissolution medium) were obtained after the addition of ≥5% Kolliphor® P338 or P407 to the FA-based formulation. Based on a 6-month stability study, it was concluded that Kolliphor® P407 was a suitable additive to modify the drug release profile of API/FA suspension-based prills when formulations were stored below 25 °C at low relative humidity.


Subject(s)
Acetaminophen/chemistry , Fatty Acids/chemistry , Delayed-Action Preparations , Drug Compounding , Drug Liberation , Drug Stability , Drug Storage , Excipients/chemistry , Kinetics , Poloxamer/chemistry , Solubility
11.
J Colloid Interface Sci ; 561: 838-848, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31813576

ABSTRACT

HYPOTHESIS: Prilling process is one of advanced techniques for manufacturing microspheres of controlled and uniform size. In this process, homogenous polymer droplets fall into an extraction medium. The aim of this study was to identify the key parameters influencing the behavior of PLGA polymer-based droplets falling into a complex extraction medium, to select appropriate conditions for prilling. EXPERIMENTS: Polymer solutions and extraction media were characterized by determining their viscosity, density and surface tension. A simple model simulating the prilling process was developed to study droplet behavior. Particle shape and velocity at the air-liquid interface and during sedimentation in the container were analyzed step by step. The correlations between the variables studied were visualized by principal component analysis (PCA). FINDINGS: Droplet deformation at the interface greatly affected the recovery and final particle shape. It depended on the viscosity ratio of polymer solution/extraction medium. The particle shape recovery depended on the viscosity and density of extraction media and polymer solutions. The solidification speed is also an important parameter. In media which the solvent diffused slowly, particles were able to relax and recover their shape, however, they can also deform during sedimentation and collision with the bottom of the cuvette.

12.
Int J Pharm ; 574: 118922, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31836482

ABSTRACT

The purpose of this study was to develop a new solid paediatric formulation for propranolol hydrochloride (PR). This drug is used to treat various paediatric diseases, and recently received clearance to treat haemangioma. However, PR has a bitter salty taste that does not facilitate high rates of compliance among children, especially in liquid formulations. In addition, the solid formulations are designed for adults and often their dosage is not suitable for children that require a flexible dose based on their weight. Therefore, matrix microbeads of EUDRAGIT® E PO containing PR were manufactured to overcome these limitations. Nine different samples were prepared using the prilling-congealing technique with high yield. Using 2 nozzles, 300 and 450 µm (code n), the diameters obtained of microbeads (from 333 to 699 µm) were homogenous and appropriate to be swallowed by children. In this study, the ratio drug:matrix for the microbeads was also examined in detail: 1:25 (F1), 1:15 (F2) and 1:10 (F3) in aqueous and tert-butyl alcohol/aqueous (code t) media. Most of the examined microbeads were characterized by high percentage of encapsulation efficiency (22-100%) and drug loading (22-77 mg of drug per g of matrix) effective for the administration of low and high doses of PR. SEM analysis revealed a matrix with a radial or a spongy structure, with numerous pores that generated soft floating microbeads in aqueous solution. Release studies confirmed a low release and dissolution of the drug in artificial saliva, mainly F1n > F1 > F2nt, and a prompt dissolution in simulated gastric media. Finally, electronic tongue measurements revealed the ability of these formulations to mask the bitter drug taste, especially for the sample with a ratio 1:25 (F1n and F1). These samples were chemically and physically stable for six months. In conclusion, the projected microbeads F1, and F1n reached the goal of the study, and could be proposed as new solid oral formulations dedicated to use by children.


Subject(s)
Polymethacrylic Acids/chemistry , Propranolol/chemistry , Taste/physiology , Administration, Oral , Chemistry, Pharmaceutical/methods , Child , Drug Compounding/methods , Drug Liberation/physiology , Electronic Nose , Excipients/chemistry , Humans , Microspheres , Saliva, Artificial/chemistry , Solubility , Tablets/chemistry
13.
Int J Pharm ; 572: 118756, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31648017

ABSTRACT

Current study evaluated the processability and characteristics of prills made of an active pharmaceutical ingredient/fatty acid (API/FA) suspension instead of previously studied API/FA solutions to enlarge the application field of prilling. Metformin hydrochloride (MET) and paracetamol (PAR) were used as model APIs while both the effect of drug load (10-40%) and FA chain length (C14-C22) were evaluated. API/FA suspensions were processable on lab-scale prilling equipment without thermal degradation, nozzle obstruction or sedimentation in function of processing time. The collected prills were spherical (AR ≥ 0.898) with a smooth surface (sphericity ≥ 0.914) and a particle size of ±2.3 mm and 2.4 mm for MET and PAR prills, respectively, independent of drug load and/or FA chain length. In vitro drug release evaluation revealed a faster drug release at higher drug load, higher API water solubility and shorter FA chain length. Solid state characterisation via XRD and Raman spectroscopy showed that API and FA crystallinity was maintained after thermal processing via prilling and during storage. Evaluation of the similarity factor indicated a stable drug release (f2 > 50) from MET and PAR prills after 6 months storage at 25 °C or 40 °C.


Subject(s)
Acetaminophen/chemistry , Fatty Acids/chemistry , Metformin/chemistry , Suspensions/chemistry , Crystallization/methods , Drug Compounding/methods , Drug Liberation , Excipients/chemistry , Particle Size , Solubility , Spectrum Analysis, Raman/methods
14.
Molecules ; 24(6)2019 Mar 17.
Article in English | MEDLINE | ID: mdl-30884869

ABSTRACT

Processing and shaping of dried gels are of interest in several fields like alginate aerogel beads used as highly porous and nanostructured particles in biomedical applications. The physicochemical properties of the alginate source, the solvent used in the gelation solution and the gel drying method are key parameters influencing the characteristics of the resulting dried gels. In this work, dried gel beads in the form of xerogels, cryogels or aerogels were prepared from alginates of different molecular weights (120 and 180 kDa) and concentrations (1.25, 1.50, 2.0 and 2.25% (w/v)) using different gelation conditions (aqueous and ethanolic CaCl2 solutions) and drying methods (supercritical drying, freeze-drying and oven drying) to obtain particles with a broad range of physicochemical and textural properties. The stability of physicochemical properties of alginate aerogels under storage conditions of 25 °C and 65% relative humidity (ICH-climatic zone II) during 1 and 3 months was studied. Results showed significant effects of the studied processing parameters on the resulting alginate dried gel properties. Stability studies showed small variations in aerogels weight and specific surface area after 3 months of storage, especially, in the case of aerogels produced with medium molecular weight alginate.


Subject(s)
Alginates/chemistry , Cryogels/chemistry , Drug Carriers/chemistry , Gels/chemistry , Drug Compounding , Freeze Drying , Gels/chemical synthesis , Humans , Molecular Weight , Nanostructures/chemistry , Porosity
15.
Int J Biol Macromol ; 129: 68-77, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30716370

ABSTRACT

This work emphazises the importance of the solubilizing conditions for the elaboration of chitosan hydrogel beads, which were produced using electromagnetic laminar jet breakup technology, resulting in dried porous beads by further freeze-drying. Paramaters such as the acid nature and concentration (acetic, formic, citric, lactic, maleic and malic, 0.1 to 0.5 mol·L-1), the chitosan concentration (2 to 5 wt%) and composition of the gelation bath (NaOH, with or without EtOH) were studied. Viscosity versus strain rate measurements were carried out on chitosan acidic solutions and the viscoelastic behaviour was studied on hydrogels. The solutions exhibiting the highest viscosities led to the stiffest macrohydrogels, as a result of chitosan carboxylate interactions. Specific surface areas of the freeze-dried beads were determined in the range from 12 to 107 m2·g-1. Their internal texture was observed by Scanning Electron Microscopy. Water uptake was also measured for further use in the field of water purification.


Subject(s)
Acids/chemistry , Biocompatible Materials/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Organic Chemicals/chemistry , Algorithms , Models, Theoretical , Porosity , Rheology , Solutions , Viscosity
16.
Int J Pharm ; 538(1-2): 97-104, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29341917

ABSTRACT

Numerous studies have been focused on hydrophobic compounds encapsulation as oils. In fact, oils can provide numerous health benefits as synergic ingredient combined with other hydrophobic active ingredients. However, stable microparticles for pharmaceutical purposes are difficult to achieve when commonly techniques are used. In this work, sunflower oil was encapsulated in calcium-alginate capsules by prilling technique in co-axial configuration. Core-shell beads were produced by inverse gelation directly at the nozzle using a w/o emulsion containing aqueous calcium chloride solution in sunflower oil pumped through the inner nozzle while an aqueous alginate solution, coming out from the annular nozzle, produced the beads shell. To optimize process parameters artificial intelligence tools were proposed to optimize the numerous prilling process variables. Homogeneous and spherical microcapsules with narrow size distribution and a thin alginate shell were obtained when the parameters as w/o constituents, polymer concentrations, flow rates and frequency of vibration were optimized by two commercial software, FormRules® and INForm®, which implement neurofuzzy logic and Artificial Neural Networks together with genetic algorithms, respectively. This technique constitutes an innovative approach for hydrophobic compounds microencapsulation.


Subject(s)
Alginates/chemistry , Artificial Intelligence , Calcium Chloride/chemistry , Sunflower Oil/administration & dosage , Capsules , Chemistry, Pharmaceutical/methods , Drug Compounding , Emulsions , Equipment Design , Fuzzy Logic , Gels , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Microspheres , Neural Networks, Computer , Sunflower Oil/chemistry , Technology, Pharmaceutical/methods
17.
Drug Dev Ind Pharm ; 42(12): 2063-2069, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27237337

ABSTRACT

CONTEXT: Ketoprofen lysinate (KL) is one of the most widely used non-steroidal anti-inflammatory drugs in the symptomatic treatment of some chronic inflammatory diseases. Compared to ketoprofen, KL shows better pharmacokinetics and tolerability. However, due to its short half-life of 1-2 h, a multiple dose regimen is required for oral administration. Thus, the present work deals with its encapsulation in a hydrogel-based system by prilling in order to prolong its activity. OBJECTIVE: In this paper, we propose alginate and pectin as carriers and release tailoring agent for the development of hydrogel-based beads for KL retarded and sustained release. MATERIALS AND METHODS: Beads were produced by a Nisco Encapsulator® using alginate or pectin. Operative variables were optimized to produce beads with desired morphology and size. Solid state properties were analyzed by SEM and DSC. Drug release performance was studied by Pharmacopeia pH-change assay to simulate gastrointestinal environment. RESULTS AND DISCUSSION: Prilling technique was successfully used to encapsulate high soluble drugs as KL in polysaccharides-based hydrogels. Pectin proved to be a proper polymer able to encapsulate ketoprofen lysine salt. Formulation (F8) showed good morphological properties and size, high drug content (15.6%) and encapsulation efficiency (93.5%) and promising drug release profiles. Hosting F8 in an acid-resistant capsule (DR®caps) a delivery platform has been developed to control KL release in a delayed (90 min lag time) and prolonged way (270 min complete release). CONCLUSION: The platform may be proposed as potentially useful in the oral administration of NSAIDs in chronic inflammatory diseases affected by circadian rhythm.

18.
Carbohydr Polym ; 147: 482-489, 2016 08 20.
Article in English | MEDLINE | ID: mdl-27178955

ABSTRACT

Bacterial infections often affect the wound, delaying healing and causing areas of necrosis. In this work, an aerogel in form of core-shell particles, able to prolong drug activity on wounds and to be easily removed was developed. Aerogel microcapsules consisted of a core made by amidated pectin hosting doxycycline, an antibiotic drug with a broad spectrum of action, and a shell consisting of high mannuronic content alginate. Particles were obtained by prilling using a coaxial nozzle for drop production and an ethanolic solution of CaCl2 as gelling promoter. The alcogels where dried using supercritical CO2. The influence of polysaccharides and drug concentrations on aerogel properties was evaluated. Spherical particles with high drug encapsulation efficiency (87%) correlated to alginate concentration in the processed liquid feeds were obtained. The release of the drug, mainly concentrated into the pectin core, was prolonged till 48h, and dependent on both drug/pectin ratio and alginate concentration.


Subject(s)
Drug Carriers , Gels/chemical synthesis , Wound Healing , Alginates/chemistry , Calcium Chloride/chemistry , Desiccation , Polysaccharides/chemistry
19.
Eur J Pharm Sci ; 88: 233-45, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-26980237

ABSTRACT

The aim of this study was to develop, evaluate and compare extended release mini-matrices based on metoprolol tartrate (MPT) and either glyceryl behenate (GB) or glyceryl palmitostearate (GPS). Mini-matrices were produced by three different techniques: hot melt extrusion, compression of melt granulates and prilling. Hot-melt extrusion and compression of granules obtained from melted material proved to be reliable, robust and reproducible techniques with aim of obtaining extended release matrices. Prilling tended to be susceptible to increased melt viscosity. Direct compression was not applicable for mini-matrix production due to poor powder flow. In general MPT release from all matrices was affected by its loading and the size of the units/particles. Processing of GB-MPT mixtures by different techniques did not lead to different drug release rates and patterns, while in case of GPS differently obtained matrices provided diverse MPT release outcomes. Matrices based on GB tended to have higher porosity compared to ones composed of GPS and thus most of the GB-based formulations showed faster drug delivery. FT-IR analysis revealed no interactions between primary components used for matrix production and Raman mapping outlined uniform MPT distribution throughout the units. DSC and X-ray studies revealed significant changes in the crystallinity of glycerides after storage under room conditions (GPS samples) and at increased temperature (GB and GPS samples), which was correlated to the changes seen in drug release rate and pattern after storage. Media composition in general tended to insignificantly affect GB matrices, while in case of GPS matrices increasing the pH and presence of biorelevant compounds induced faster drug release.


Subject(s)
Anti-Arrhythmia Agents/chemistry , Metoprolol/chemistry , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations , Drug Industry , Drug Liberation , Drug Storage , Excipients/chemistry , Glycerides/chemistry , Lipids/chemistry , Time Factors
20.
Eur J Pharm Biopharm ; 101: 90-102, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26851504

ABSTRACT

Newly discovered active macromolecules are highly promising for therapy, but poor bioavailability hinders their oral use. Microencapsulation approaches, such as protein prilling into microspheres, may enable protection from gastrointestinal (GI) enzymatic degradation. This would increase bioavailability mainly for local delivery to GI lumen or mucosa. This work's purpose was to design a novel architecture, namely a Nanotubes-in-Microgel Oral System, by prilling for protein delivery. Halloysite nanotubes (HNT) were selected as orally acceptable clay particles and their lumen was enlarged by alkaline etching. This chemical modification increased the luminal volume to a mean of 216.3 µL g(-1) (+40.8%). After loading albumin as model drug, the HNT were entrapped in microgels by prilling. The formation of Nanoparticles-in-Microsphere Oral System (NiMOS) yielded entrapment efficiencies up to 63.2%. NiMOS shape was spherical to toroidal, with a diameter smaller than 320 µm. Release profiles depended largely on the employed system and HNT type. Protein stability was determined throughout prilling and after in vitro enzymatic degradation. Prilling did not harm protein structure, and NiMOS demonstrated higher enzymatic protection than pure nanotubes or microgels, since up to 82% of BSA remained unscathed after in vitro digestion. Therefore, prilled NiMOS was shown to be a promising and flexible multi-compartment system for oral (local) macromolecular delivery.


Subject(s)
Gels/chemistry , Nanotubes/chemistry , Proteins/chemistry , Administration, Oral , Aluminum Silicates/chemistry , Chemistry, Pharmaceutical/methods , Clay , Drug Compounding/methods , Drug Delivery Systems/methods , Microspheres , Nanoparticles/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL