Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Pharmeur Bio Sci Notes ; 2024: 27-75, 2024.
Article in English | MEDLINE | ID: mdl-38533680

ABSTRACT

In 2010, the reporting of thrombotic adverse events for one subcutaneous and certain intravenous immunoglobulins (IGs) raised some concerns. In Europe, regulatory bodies rapidly revised compendial specifications for therapeutic IGs to ensure they do not exhibit thrombogenic (procoagulant) activity (PCA). At the global level, a working group (GWG) was launched with the aim of assessing PCA measurement methods and limits, considering results obtained by human IG manufacturers during in-process controls. The GWG created three dedicated subgroups to investigate the FXIa chromogenic assay, the non-activated partial thromboplastin time (NAPTT) test and the thrombin generation assay (TGA). The European Directorate for the Quality of Medicines & HealthCare (EDQM) was responsible for co-ordinating the subgroup in charge of evaluating the FXIa chromogenic assay in a study that assessed the sensitivity and robustness of two commercial chromogenic FXIa test kits. The impact of IG product formulation on FXIa recovery and the suitability of PCA-containing IG products as potential reference standards/controls were also assessed. IG materials representative of marketed products were provided to four laboratories for a study that was carried out in two steps: 1) two chromogenic FXIa test kit manufacturers assessed the performance and determined optimal test conditions by their respective methods, 2) two OMCLs studied both kits using an optimised study design. Regarding sensitivity, the study results identified suitable dose-response intervals and limits with both chromogenic FXIa test kits. This allowed the establishment of dilution ranges for optimal detection of FXIa/PCA in 5 % and 10 % IG products in the range of 1-6 mIU/mL. However, careful optimisation of the sample dilutions was required (notably to avoid potential matrix effects) and the choice of the mode of data acquisition (kinetic or end-point method) contributed to sensitivity in routine use. Importantly, the composition of IG products was of minor concern for FXIa determination with both test kits. Potential reference materials evaluated in the study behaved as expected and could be useful should a separate reference standard to the FXIa WHO IS be deemed necessary in future.


Subject(s)
Immunoglobulin G , Immunoglobulins, Intravenous , Humans , Thrombin , Blood Coagulation Tests , Reference Standards
2.
Adv Mater ; 36(15): e2308701, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37971104

ABSTRACT

Developing hydrogels that can quickly reach deep bleeding sites, adhere to wounds, and expand to stop lethal and/or noncompressible bleeding in civil and battlefield environments remains a challenge. Herein, an injectable, antibacterial, self-expanding, and self-propelling hydrogel bioadhesive with procoagulant activity and rapid gelation is reported. This hydrogel combines spontaneous gas foaming and rapid Schiff base crosslinking for lethal massive hemorrhage. Hydrogels have rapid gelation and expansion rate, high self-expanding ratio, excellent antibacterial activity, antioxidant efficiency, and tissue adhesion capacity. In addition, hydrogels have good cytocompatibility, procoagulant ability, and higher blood cell/platelet adhesion activity than commercial combat gauze and gelatin sponge. The optimized hydrogel (OD-C/QGQL-A30) exhibits better hemostatic ability than combat gauze and gelatin sponge in rat liver and femoral artery bleeding models, rabbit volumetric liver loss massive bleeding models with/without anticoagulant, and rabbit liver and kidney incision bleeding models with bleeding site not visible. Especially, OD-C/QGQL-A30 rapidly stops the bleedings from pelvic area of rabbit, and swine subclavian artery vein transection. Furthermore, OD-C/QGQL-A30 has biodegradability and biocompatibility, and accelerates Methicillin-resistant S. aureus (MRSA)-infected skin wound healing. This injectable, antibacterial, self-expanding, and self-propelling hydrogel opens up a new avenue to develop hemostats for lethal massive bleeding, abdominal organ bleeding, and bleeding from coagulation lesions.


Subject(s)
Hydrogels , Methicillin-Resistant Staphylococcus aureus , Rats , Animals , Rabbits , Swine , Hydrogels/pharmacology , Adhesives , Wound Healing , Gelatin , Hemorrhage/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
3.
Front Cardiovasc Med ; 10: 1253177, 2023.
Article in English | MEDLINE | ID: mdl-38075963

ABSTRACT

The presence of residual activated coagulation factor XI (FXIa) in some commercial intravenous immunoglobulin (IVIG) products has been identified as the root cause of a small number of thromboembolic events in patients who had received such therapy. Our objectives here were to design and evaluate the manufacturing process of GC5107, a 10% glycine-stabilized IVIG product, for its capacity to remove FXIa. The manufacturing process included a cation exchange chromatography (CEX) step, which employs a resin that binds immunoglobulin G (IgG) with high capacity. Procoagulant activity was assessed using Western blot analysis, enzyme-linked immunosorbent assay, thrombin generation assay, chromogenic FXIa assay, and non-activated partial thromboplastin time (NaPTT) assay. A spiking study in which large quantities of FXIa were added to samples before CEX chromatography was used to examine the robustness of the process to remove FXIa. Western blot and ELISA analyses demonstrated that residual FXIa remained in the intermediate manufacturing products until after CEX chromatography, when it was reduced to undetectable levels. The spiking study demonstrated that CEX chromatography removed >99% of FXI protein and reduced FXI activity to below detection limits, even in samples containing 158-fold greater FXIa levels than that of normal samples. Procoagulant activity in 9 consecutive lots of GC5107 was reduced to below the detection limits of the thrombin generation and chromogenic FXIa assays (<1.56 IU/ml and <0.16 IU/ml, respectively). The NaPTT of >250 s in all 9 lots indicated very low levels of procoagulant activity. We demonstrate that a novel 10% IVIG manufacturing process including CEX chromatography is a robust means of removing FXIa from the final preparation.

4.
Food Chem Toxicol ; 181: 114084, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37816477

ABSTRACT

Parabens are widely used as preservatives, added to products commonly used by humans, and to which individuals are exposed orally or dermally. Once absorbed into the body, parabens move into the bloodstream and travel through the systemic circulation. We investigated the potential impact of parabens on the enhanced generation of thrombin by red blood cells (RBCs), which are the principal cellular components of blood. We tested the effects of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP), and p-hydroxybenzoic acid on freshly isolated human RBCs. BuP and simultaneous exposure to BuP and PrP significantly increased phosphatidylserine (PS) externalization to the outer membranes of RBCs. PS externalization by BuP was found to be mediated by increasing intracellular Ca2+ levels in RBCs. The morphological changes in BuP-treated RBCs were observed under an electron microscope. The BuP-exposed RBCs showed increased thrombin generation and adhesion to endothelial cells. Additionally, the externalization of PS exposure and thrombin generation in BuP-treated RBCs were more susceptible to high shear stress, which mimics blood turbulence under pathological conditions. Collectively, we observed that BuP induced morphological and functional changes in RBCs, especially under high shear stress, suggesting that BuP may contribute to the thrombotic risk via procoagulant activity in RBCs.


Subject(s)
Parabens , Phosphatidylserines , Humans , Parabens/toxicity , Calcium/pharmacology , Thrombin/pharmacology , Endothelial Cells , Erythrocytes
5.
J Thromb Thrombolysis ; 56(2): 264-274, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37284999

ABSTRACT

Patients with severe aortic stenosis (AS) after replacement of the transcatheter aortic valve (TAVR) are more likely to develop thrombotic complications such as cerebral embolism and artificial valve thrombosis. However, the mechanism is not yet well defined. We aimed to explore the plasma extracellular vesicles (EVs) levels and their role in the induction of procoagulant activity (PCA) in patients receiving TAVR alone or TAVR with percutaneous coronary intervention (PCI). EVs were analyzed with flow cytometer. Markers of platelet and endothelial cell activation were quantified using selective enzyme-linked immunosorbent assay (ELISA) kits. Procoagulant activity (PCA) was assessed by clotting time, purified clotting complex assays, and fibrin production assays. Our results confirmed that EVs with positive phosphatedylserin (PS+EV), platelet EVs (PEVs) and positive tissue factor EVs (TF+EVs) were higher in patients following TAVR than before TAVR, particularly in TAVR with PCI. Furthermore, endothelial-derived EVs (EEVs) were also higher in patients after TAVR with PCI than pre-TAVR, however, the EEVs levels in TAVR alone patients were gradually reduce than pre-TAVR. In addition, we further proved that total EVs contributed to dramatically shortened coagulation time, increased intrinsic/extrinsic factor Xa and thrombin generation in patients after TAVR, especially in TAVR with PCI. The PCA was markedly attenuated by approximately 80% with lactucin. Our study reveals a previously unrecognized link between plasma EV levels and hypercoagulability in patients after TAVR, especially TAVR with PCI. Blockade of PS+EVs may improve the hypercoagulable state and prognosis of patients.


Subject(s)
Aortic Valve Stenosis , Coronary Artery Disease , Percutaneous Coronary Intervention , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/methods , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/complications , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Coronary Artery Disease/complications , Treatment Outcome , Aortic Valve/surgery , Risk Factors
6.
Res Pract Thromb Haemost ; 7(3): 100124, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37012986

ABSTRACT

Background: Circulating procoagulant extracellular vesicles (EVs) are increased in diseases, such as cancer, sepsis, and COVID-19. EV tissue factor (TF) activity is associated with disseminated intravascular coagulation in sepsis and venous thrombosis in patients with pancreatic cancer and COVID-19. EVs are commonly isolated by centrifugation at ∼20,000 g. Objectives: In this study, we analyzed the TF activity of 2 EV populations enriched for large and small EVs in patients with either sepsis, pancreatic cancer, or COVID-19. Methods: EVs were isolated from plasma by sequential centrifugation at 20,000 g (large EVs, LEVs) and then 100,000 g (small EVs, SEVs). We analyzed EVs from plasma prepared from whole blood samples from healthy individuals with or without lipopolysaccharide (LPS) stimulation as well as EVs from plasma samples from patients with either sepsis, pancreatic cancer, or COVID-19. TF-dependent (EV-TF activity) and TF-independent factor Xa (FXa) generation of the EVs was measured. Results: LPS increased EV-TF activity in LEVs but not SEVs. Similarly, in 2 patients with sepsis who had EV-TF activity above the background of the assay we observed EV-TF activity in LEVs but not SEVs. Patients with pancreatic cancer or COVID-19 had circulating EV-TF activity in both LEVs and SEVs. Conclusion: We recommend that EVs are isolated from plasma from patients by centrifugation at 100,000 g rather than 20,000 g to obtain a more accurate measure of levels of circulating EV-TF activity.

7.
Heliyon ; 9(1): e12714, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36632113

ABSTRACT

Southeast Asian ovalocytosis (SAO) is characterized by the misfolding of band 3 protein in red blood cells (RBC). The abnormal structure of the band 3 protein results in dysmorphic RBC and related functions. Previous data showed that in vitro storage under hypothermic conditions alters band 3 protein structure and function. Microvesiculation includes shedding of RBC membranes, called RBC-derived microparticles/extracellular vesicles (RMP/EVs), and storage lesions. Unfortunately, there is no evidence of RBC microvesiculation under in vitro storage conditions in heterozygous SAO individuals. This study determined the generation of REVs and procoagulant activity during the storage of SAO blood samples in southern Thailand. Venous blood was collected from eight SAO and seven healthy individuals, preserved in citrate phosphate dextrose-adenine 1 (CPDA-1) at 4 °C for 35 days. The absolute numbers of REVs and PS-expressing RBCs were analyzed using flow cytometry. The procoagulant activity of the produced extracellular vesicles was determined by a clotting time assay. The results showed a significant increase in the number of REVs and PS-expressing RBCs in the SAO blood samples. Significantly correlated PS externalization and procoagulant activity were observed in the SAO blood samples. These lines of evidence indicate that the abnormality of the Band 3 protein is possibly involved in aberrant microvesiculation, exerting procoagulant activity in vitro. Increased pools of REV production and abnormal storage lesions in SAO blood samples should be a concern. Notably, the mechanisms underlying membrane vesiculation depend on the extent of blood cell storage under hypothermic conditions.

8.
Int J Lab Hematol ; 44 Suppl 1: 89-100, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36074709

ABSTRACT

Platelet procoagulant mechanisms are emerging to be complex and important to achieving haemostasis. The mechanisms include the release of procoagulant molecules from platelet storage granules, and strong agonist-induced expression of procoagulant phospholipids on the outer platelet membrane for tenase and prothrombinase assembly. The release of dense granule polyphosphate is important to platelet procoagulant function as it promotes the activation of factors XII, XI and V, inhibits tissue factor pathway inhibitor and fibrinolysis, and strengthens fibrin clots. Platelet procoagulant function also involves the release of partially activated factor V from platelets. Scott syndrome has provided important insights on the mechanisms that regulate procoagulant phospholipids expression on the external platelet membrane, which require strong agonist stimulation that increase cystolic calcium levels, mitochondrial calcium uptake, the loss of flippase function and activation of the transmembrane scramblase protein anoctamin 6. There have been advances in the methods used to directly and indirectly assess platelet procoagulant function in health and disease. Assessments of thrombin generation with platelet rich plasma samples has provided new insights on how platelet procoagulant function is altered in inherited platelet disorders, and how platelets influence the bleeding phenotype of a number of severe coagulation factor deficiencies. Several therapies, including desmopressin and recombinant factor VIIa, improve thrombin generation by platelets. There is growing interest in targeting platelet procoagulant function for therapeutic benefit. This review highlights recent advances in our understanding of platelet-dependent procoagulant mechanisms in health and in bleeding disorders.


Subject(s)
Blood Coagulation Disorders , Hemorrhagic Disorders , Blood Platelets/metabolism , Calcium/metabolism , Humans , Phospholipids/metabolism , Platelet Activation , Thrombin/metabolism
9.
Mol Biol Rep ; 49(5): 4129-4134, 2022 May.
Article in English | MEDLINE | ID: mdl-35412175

ABSTRACT

BACKGROUND: Proprotein convertase subtilisin kexin 9 (PCSK9) is a serin protease synthesized mainly in the liver that binds the receptor of low-density lipoprotein and promotes its degradation in lysosomes. PCSK9 is considered a promising target for the development of new therapies for the treatment of hypercholesterolemia and related cardiovascular diseases. Extracellular vesicles represent a heterogeneous population of vesicles, ranging in size between 0.05 and 1 µm involved in numerous pathophysiological processes, including blood coagulation. We investigated whether PCSK9 stimulation induces the release of procoagulant extracellular vesicles from human mononuclear cells (PBMCs) and THP-1 cells. METHODS AND RESULTS: PBMCs and THP-1 cells were stimulated whit PCSK9, the generation of EV was assessed by the prothrombinase assay and by cytofluorimetric analysis. EV-associated tissue factor activity was assessed by a one-stage clotting assay. PCSK9 induced an increase in extracellular generation by PBMCs and THP-1 cells as well as an increase in extracellular vesicle-associated tissue factor. Pre-treatment with inhibitors of the toll like receptor, TLR4 (C34), and of NF-κB signaling (BAY 11-7082), downregulated PCSK9-induced extracellular vesicle generation and of extracellular- bound tissue factor. Similar effect was obtained by an anti-PCSK9 human-monoclonal antibody. CONCLUSIONS: PCSK9-mediated generation of procoagulant EV could contribute to increase the prothrombotic status in patients with cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Proprotein Convertase 9/metabolism , Receptors, LDL , Subtilisins , Thromboplastin
10.
Biol Pharm Bull ; 45(2): 178-183, 2022.
Article in English | MEDLINE | ID: mdl-35110504

ABSTRACT

Obesity is associated with the risk of venous thromboembolism. Thrombi are constantly formed via the coagulation cascade and degraded by the fibrinolytic system, so they tend to form in obese individuals. Adipocytes are involved in thrombus formation in obesity, but it is not clear whether bioactive factors from adipocytes directly initiate or enhance coagulation and thrombosis. In this study, we confirmed that adipocyte-derived extracellular vesicles (ADEVs) enhance procoagulant activity in vitro. ADEVs prepared from the culture supernatant of mature 3T3-L1 adipocytes shortened plasma clotting times. Moreover, the effect of ADEVs on clotting time was weakened when using plasma lacking factors of the extrinsic pathway, but not the intrinsic pathway. ADEVs contain tissue factors and phosphatidylserine, which are involved in the extrinsic pathway, and blockade of these molecules diminished the effects of ADEVs on plasma clotting time. Additionally, the effect of ADEVs on plasma clotting time was further enhanced when cells were stimulated with the proinflammatory cytokine tumor necrosis factor-α. Thus, ADEVs may be a factor in thrombus formation in obesity.


Subject(s)
Adipocytes/physiology , Blood Coagulation/drug effects , 3T3-L1 Cells , Animals , Extracellular Vesicles , Humans , Mice , Plasma
11.
Biomed Pharmacother ; 146: 112557, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34965503

ABSTRACT

Depression is associated with thrombotic risk and arterial events, its proper management is strongly recommended in coronary artery disease (CAD) patients. We have previously shown that the Brain-Derived Neurotrophic Factor (BDNF)Val66Met polymorphism, related to depression, is associated with arterial thrombosis in mice, and with an increased risk of acute myocardial infarction in humans. Herein, expanding the previous findings on BDNFVal66Met polymorphism, we show that desipramine, a norepinephrine reuptake-inhibitor, rescues behavioral impairments, reduces the arterial thrombosis risk, abolishes pathological coagulation and platelet hyper-reactivity, normalizes leukocyte, platelet, and bone marrow megakaryocyte number and restores physiological norepinephrine levels in homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. The in vitro data confirm the enhanced procoagulant activity and the alpha2A-adrenergic receptor (α2A-ADR) overexpression found in BDNFMet/Met mice and we provide evidence that, in presence of Met variant, norepinephrine is crucial to up-regulate procoagulant activity and to enhance platelet generation. The α2-ADR antagonist rauwolscine rescues the prothrombotic phenotype in BDNFMet/Met mice and reduces procoagulant activity and platelet generation in cells transfected with BDNFMet plasmid or exposed to pro-BDNFMet peptide. Finally, we show that homozygous BDNFMet/Met CAD patients have hyper-reactive platelets overexpressing abundant α2A-ADR. The great proplatelet release from their megakaryocytes well reflects their higher circulating platelet number compared to BDNFVal/Val patients. These data reveal an unprecedented described role of Met allele in the dysregulation of norepinephrine/α2A-ADR pathway that may explain the predisposition to arterial thrombosis. Overall, the development of α2A-ADR inhibitors might represent a pharmacological treatment for depression-associated thrombotic conditions in this specific subgroup of CAD patients.


Subject(s)
Blood Coagulation/physiology , Brain-Derived Neurotrophic Factor/genetics , Depression/pathology , Norepinephrine/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Thrombosis/pathology , Aged , Aged, 80 and over , Animals , Coronary Artery Disease/pathology , Desipramine/pharmacology , Female , Humans , Male , Mice , Middle Aged , Polymorphism, Single Nucleotide
12.
Clin Res Hepatol Gastroenterol ; 46(1): 101697, 2022 01.
Article in English | MEDLINE | ID: mdl-33848669

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH) patients are at a high risk of developing venous thromboembolism, with a high rate of morbidity and mortality. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) in patients with NASH remains unclear. Our study aimed to investigate the formation of NETs in NASH patients stimulated by specific pro-inflammatory factors. Moreover, we evaluated the pivotal role of NETs in the induction of hypercoagulability in NASH and the interaction between NETs and endothelial injury. METHOD: The levels of the NETs biomarkers were evaluated in the plasma samples of 27 NASH patients and 18 healthy subjects. The formation of NETs was visualized using immunofluorescence microscopy. The PCA of the NETs was assessed using coagulation time, purified coagulation complex, and fibrin formation assays. Confocal microscopy was further used to evaluate the interactions between the NETs and HUVECs. RESULTS: The levels of NETs markers in the plasma of NASH patients were significantly higher than healthy controls. NETs derived from NASH enhanced thrombin and fibrin formation and significantly reduced CT (p<0.05). The mixture of IL-6 and TNF-α triggered the NETs release in the plasma rather than them alone. Additionally, the NETs exerted cytotoxic effects on the endothelial cells, converting them to a procoagulant and pro-inflammatory phenotype, and DNase I could reverse these effects. CONCLUSION: Our results revealed the primary role of NETs in promoting the hypercoagulable state in NASH patients. Methods that prevent the formation of NETs may be a novel approach for the prevention and treatment of NASH.


Subject(s)
Extracellular Traps , Non-alcoholic Fatty Liver Disease , Blood Coagulation , Cytokines , Endothelial Cells , Fibrin , Humans , Neutrophils
13.
In Vivo ; 35(6): 3345-3353, 2021.
Article in English | MEDLINE | ID: mdl-34697168

ABSTRACT

BACKGROUND/AIM: This work aimed to prospectively evaluate the clinical significance of circulating microparticles (MPs) in relation to thrombotic risk factors and thrombotic complications in patients with BCR/ABL1-negative myeloproliferative neoplasms (MPN). PATIENTS AND METHODS: In a cohort of 206 patients with MPN, MPs' procoagulant activity was measured by the Zymuphen functional assay in 429 samples, while platelet- and erythrocyte-MPs were enumerated by flow cytometry in 558 samples. RESULTS: MPN patients had higher MP levels than the control group. The levels of MPs were higher in male patients, smokers, and those who were older than 60 years, and in the presence of JAK2V617F mutation, history of thrombosis, platelets >400×109/l, hematocrit >45%, or leukocytes >10×109/l. Cytoreductive treatment reduced MP levels, with anagrelide being associated with lower MP levels than hydroxyurea. CONCLUSION: The relationship with thrombotic risk factors indicates a possible role of MPs in the complex thrombotic mechanism, though cytoreductive treatment seems to affect this role through reducing MP levels.


Subject(s)
Cell-Derived Microparticles , Myeloproliferative Disorders , Neoplasms , Thrombosis , Blood Platelets , Humans , Male , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Thrombosis/etiology , Thrombosis/genetics
14.
Cancers (Basel) ; 13(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34680246

ABSTRACT

Epstein-Barr virus (EBV)-positive T- or NK-cell neoplasms show progressive systemic inflammation and abnormal blood coagulation causing hemophagocytic lymphohistiocytosis (HLH). It was reported that inflammatory cytokines were produced and secreted by EBV-positive neoplastic T- or NK-cells. These cytokines can induce the differentiation of monocytes into macrophages leading to HLH. To clarify which products of EBV-positive neoplastic T- or NK-cells have effects on monocytes, we performed a co-culture assay of monocytes with the supernatants of EBV-positive T- or NK-cell lines. The expression of differentiation markers, the phagocytosis ability, and the mRNA expression of the inflammatory cytokines of THP-1, a monocytic cell line, clearly increased after culturing with the supernatants from EBV-NK-cell lines. Co-culturing with the supernatants promoted the expression of CD80 and CD206 as well as M1 and M2 macrophage markers in human monocytes. Co-culturing with the supernatants of EBV-NK-cell lines significantly enhanced the procoagulant activity and the tissue factor expression of monocytes. Interferon (IFN)-γ was elevated extremely not only in the supernatant of EBV-NK-cell lines but also in the plasma of EBV-positive NK-cell neoplasms patients accompanying HLH. Finally, we confirmed that IFN-γ directly enhanced the differentiation into M1-like macrophages and the procoagulant activity of monocytes. Our findings suggest that IFN-γ may potentially serve as a therapeutic target to regulate HLH in EBV-positive NK-cell neoplasms.

15.
Part Fibre Toxicol ; 18(1): 28, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34348736

ABSTRACT

BACKGROUND: Expanding biomedical application of anatase titanium dioxide (TiO2) nanoparticles (NPs) is raising the public concern on its potential health hazards. Here, we demonstrated that TiO2 NPs can increase phosphatidylserine (PS) exposure and procoagulant activity of red blood cells (RBCs), which may contribute to thrombosis. RESULTS: We conducted in vitro studies using RBCs freshly isolated from healthy male volunteers. TiO2 NPs exposure (≦ 25 µg/mL) induced PS exposure and microvesicles (MV) generation accompanied by morphological changes of RBCs. While ROS generation was not observed following the exposure to TiO2 NPs, intracellular calcium increased and caspase-3 was activated, which up-regulated scramblase activity, leading to PS exposure. RBCs exposed to TiO2 NPs could increase procoagulant activity as measured by accelerated thrombin generation, and enhancement of RBC-endothelial cells adhesion and RBC-RBC aggregation. Confirming the procoagulant activation of RBC in vitro, exposure to TiO2 NPs (2 mg/kg intravenously injection) in rats increased thrombus formation in the venous thrombosis model. CONCLUSION: Collectively, these results suggest that anatase TiO2 NPs may harbor prothrombotic risks by promoting the procoagulant activity of RBCs, which needs attention for its biomedical application.


Subject(s)
Nanoparticles , Thrombosis , Animals , Endothelial Cells , Erythrocytes , Male , Nanoparticles/toxicity , Phosphatidylserines , Rats , Thrombosis/chemically induced , Titanium/toxicity
16.
Int J Mol Sci ; 22(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065600

ABSTRACT

Curcumin is a natural bioactive component derived from the turmeric plant Curcuma longa, which exhibits a range of beneficial activities on human cells. Previously, an inhibitory effect of curcumin on platelets was demonstrated. However, it is unknown whether this inhibitory effect is due to platelet apoptosis or procoagulant platelet formation. In this study, curcumin did not activate caspase 3-dependent apoptosis of human platelets, but rather induced the formation of procoagulant platelets. Interestingly, curcumin at low concentration (5 µM) potentiated, and at high concentration (50 µM) inhibited ABT-737-induced platelet apoptosis, which was accompanied by inhibition of ABT-737-mediated thrombin generation. Platelet viability was not affected by curcumin at low concentration and was reduced by 17% at high concentration. Furthermore, curcumin-induced autophagy in human platelets via increased translocation of LC3I to LC3II, which was associated with activation of adenosine monophosphate (AMP) kinase and inhibition of protein kinase B activity. Because curcumin inhibits P-glycoprotein (P-gp) in cancer cells and contributes to overcoming multidrug resistance, we showed that curcumin similarly inhibited platelet P-gp activity. Our results revealed that the platelet inhibitory effect of curcumin is mediated by complex processes, including procoagulant platelet formation. Thus, curcumin may protect against or enhance caspase-dependent apoptosis in platelets under certain conditions.


Subject(s)
Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Blood Platelets/drug effects , Curcumin/pharmacology , Nitrophenols/pharmacology , Sulfonamides/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenosine Monophosphate/metabolism , Blood Platelets/metabolism , Curcuma/chemistry , Drug Resistance, Multiple/drug effects , Humans , Piperazines/pharmacology , Plant Extracts/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism
17.
Blood ; 137(23): 3174-3180, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33940594

ABSTRACT

Platelets have long been known to play important roles beyond hemostasis and thrombosis. Now recognized as a bona fide mediator of malignant disease, platelets influence various aspects of cancer progression, most notably tumor cell metastasis. Interestingly, platelets isolated from cancer patients often display distinct RNA and protein profiles, with no clear alterations in hemostatic activity. This phenotypically distinct population, termed tumor-educated platelets, now receive significant attention for their potential use as a readily available liquid biopsy for early cancer detection. Although the mechanisms underpinning platelet education are still being defined, direct uptake and storage of tumor-derived factors, signal-dependent changes in platelet RNA processing, and differential platelet production by tumor-educated megakaryocytes are the most prominent scenarios. This article aims to cover the various modalities of platelet education by tumors, in addition to assessing their diagnostic potential.


Subject(s)
Blood Platelets/metabolism , Megakaryocytes/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , RNA, Neoplasm/metabolism , Animals , Blood Platelets/pathology , Humans , Liquid Biopsy , Megakaryocytes/pathology , Neoplasm Metastasis , Neoplasms/diagnosis , Neoplasms/pathology
18.
J Thromb Thrombolysis ; 52(1): 30-41, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33011897

ABSTRACT

Microparticles (MPs) have been associated with inflammatory and thrombotic disease. High levels of MPs have been identified in patients with systemic lupus erythematosus (SLE) and associated with cardiovascular disease. We analyzed the procoagulant activity of MPs and its correlation with arteriosclerosis and arterial thrombosis in SLE patients. Eighty-seven patients with SLE were included: 22 (25.3%) with associated antiphospholipid syndrome (APS), 32 (36.8%) without antiphospholipid antibodies (aPL) and 33 (37.9%) with aPL but without APS. Subclinical arteriosclerosis, defined as the presence and number of plaques, was evaluated by ultrasonography of carotid arteries. Thrombotic events were confirmed by objective methods. The procoagulant activity of MPs was determined by a functional assay with annexin V. Subclinical arteriosclerosis was found in 19 (21.8%) patients. Thirteen episodes of arterial thrombosis and eight of venous thrombosis were recorded. The procoagulant activity of MPs was greater in patients with arterial thrombosis (17.28 ± 8.29 nM vs 12.96 ± 7.90 nM, p < 0.05). In patients without arterial thrombosis, greater procoagulant activity of MPs was identified in patients with multiple (≥ 2) carotid plaques (17.26 ± 10.63 nM vs 12.78 ± 7.15 nM, p = 0.04). In the multivariate analysis, the procoagulant activity of MPs was independently associated with multiple (≥ 2) carotid plaques and arterial thrombosis [OR = 1.094 (95%CI 1.010-1.185), p = 0.027 and OR = 1.101 (95%CI 1.025-1.182), p = 0.008; respectively]. In conclusion, the procoagulant activity of MPs is associated with arteriosclerosis burden and arterial thrombosis in patients with SLE.


Subject(s)
Antiphospholipid Syndrome , Arteriosclerosis , Lupus Erythematosus, Systemic , Thrombosis , Antibodies, Antiphospholipid , Antiphospholipid Syndrome/complications , Humans , Lupus Erythematosus, Systemic/complications , Thrombosis/etiology
19.
Liver Int ; 41(2): 333-347, 2021 02.
Article in English | MEDLINE | ID: mdl-33159371

ABSTRACT

BACKGROUND & AIMS: Patients with obstructive jaundice (OJ) are considered to be prothrombotic with increased risk of thromboembolism complications. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) and thrombosis risk in patients with OJ is unclear. In this study, we investigated NETs formation in OJ patients and the role of elevated unconjugated bilirubin (UCB) in inducing NETs, resulting in enhanced PCA and endothelial injury. METHODS: NETs of OJ patients and healthy controls were measured. NETs PCA was assessed via coagulation time (CT), fibrin formation and purified coagulation complex production assays. Visualization of NETs and mitochondrial reactive oxygen species (MitoROS) were performed with a fluorescence microscope. We further used confocal microscopy to quantify the exposure of phosphatidylserine (PS), fibrin strands and FVa/Xa on Human umbilical vein endothelial cells (HUVECs). RESULTS: Assessment of NETs components levels revealed greater NETs production in OJ patients than in healthy controls. Importantly, OJ-NETs were responsible for enhanced PCA. UCB induced NETs formation via MitoROS accumulation and mitochondrial mobilization. HUVECs cocultured with OJ NETs lost their cell-cell junctions and consequently converted to a procoagulant phenotype. The PCA was attenuated by using DNase I alone or in combination with lactadherin. CONCLUSIONS: Our results suggest that UCB-induced NETs play a prominent role in promoting the hypercoagulable and prothrombotic state in OJ patients. The increased MitoROS accumulation in neutrophils initiated NETosis. NETs are promising targets for indicating or improving coagulation disorders in OJ patients.


Subject(s)
Extracellular Traps , Jaundice, Obstructive , Thrombosis , Blood Coagulation , Endothelial Cells , Humans , Neutrophils
20.
Int J Mol Sci ; 21(24)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327658

ABSTRACT

Patients affected by the rare Glanzmann thrombasthenia (GT) suffer from defective or low levels of the platelet-associated glycoprotein (GP) IIb/IIIa, which acts as a fibrinogen receptor, and have therefore an impaired ability to aggregate platelets. Because the procoagulant activity is a dichotomous facet of platelet activation, diverging from the aggregation endpoint, we were interested in characterizing the ability to generate procoagulant platelets in GT patients. Therefore, we investigated, by flow cytometry analysis, platelet functions in three GT patients as well as their ability to generate procoagulant collagen-and-thrombin (COAT) platelets upon combined activation with convulxin-plus-thrombin. In addition, we further characterized intracellular ion fluxes during the procoagulant response, using specific probes to monitor by flow cytometry kinetics of cytosolic calcium, sodium, and potassium ion fluxes. GT patients generated higher percentages of procoagulant COAT platelets compared to healthy donors. Moreover, they were able to mobilize higher levels of cytosolic calcium following convulxin-plus-thrombin activation, which is congruent with the greater procoagulant activity. Further investigations will dissect the role of GPIIb/IIIa outside-in signalling possibly implicated in the regulation of platelet procoagulant activity.


Subject(s)
Blood Platelets/metabolism , Thrombasthenia/metabolism , Blood Platelets/physiology , Calcium/metabolism , Collagen/metabolism , Flow Cytometry , Humans , Platelet Activation/physiology , Potassium/metabolism , Sodium/metabolism , Thrombin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL