ABSTRACT
Vasopressin regulates water homeostasis via the V2 receptor in the kidney at least in part through protein kinase A (PKA) activation. Vasopressin, through an unknown pathway, upregulates the activity and phosphorylation of Na+-Cl- cotransporter (NCC) and Na+-K+-2Cl- cotransporter 2 (NKCC2) by Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), which are regulated by the with-no-lysine kinase (WNK) family. Phosphorylation of WNK4 at PKA consensus motifs may be involved. Inhibitor 1 (I1), a protein phosphatase 1 (PP1) inhibitor, may also play a role. In human embryonic kidney (HEK)-293 cells, we assessed the phosphorylation of WNK4, SPAK, NCC, or NKCC2 in response to forskolin or desmopressin. WNK4 and cotransporter phosphorylation were studied in desmopressin-infused WNK4-/- mice and in tubule suspensions. In HEK-293 cells, only wild-type WNK4 but not WNK1, WNK3, or a WNK4 mutant lacking PKA phosphorylation motifs could upregulate SPAK or cotransporter phosphorylation in response to forskolin or desmopressin. I1 transfection maximized SPAK phosphorylation in response to forskolin in the presence of WNK4 but not of mutant WNK4 lacking PP1 regulation. We observed direct PP1 regulation of NKCC2 dephosphorylation but not of NCC or SPAK in the absence of WNK4. WNK4-/- mice with desmopressin treatment did not increase SPAK/OSR1, NCC, or NKCC2 phosphorylation. In stimulated tubule suspensions from WNK4-/- mice, upregulation of pNKCC2 was reduced, whereas upregulation of SPAK phosphorylation was absent. These findings suggest that WNK4 is a central node in which kinase and phosphatase signaling converge to connect cAMP signaling to the SPAK/OSR1-NCC/NKCC2 pathway.NEW & NOTEWORTHY With-no-lysine kinases regulate the phosphorylation and activity of the Na+-Cl- and Na+-K+-2Cl- cotransporters. This pathway is modulated by arginine vasopressin (AVP). However, the link between AVP and WNK signaling remains unknown. Here, we show that AVP activates WNK4 through increased phosphorylation at putative protein kinase A-regulated sites and decreases its dephosphorylation by protein phosphatase 1. This work increases our understanding of the signaling pathways mediating AVP actions in the kidney.
Subject(s)
Arginine Vasopressin , Protein Serine-Threonine Kinases , Mice , Humans , Animals , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , HEK293 Cells , Arginine Vasopressin/metabolism , K Cl- Cotransporters , Deamino Arginine Vasopressin , Colforsin , Protein Phosphatase 1/metabolism , Kidney/metabolism , Solute Carrier Family 12, Member 3/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolismABSTRACT
The activity of the Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) is finely tuned by phosphorylation networks involving serine/threonine kinases and phosphatases. While much attention has been paid to the With-No-lysine (K) kinase (WNK)- STE20-related Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive kinase 1 (OSR1) signaling pathway, there remain many unanswered questions regarding phosphatase-mediated modulation of NCC and its interactors. The phosphatases shown to regulate NCC's activity, directly or indirectly, are protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A), calcineurin (CN), and protein phosphatase 4 (PP4). PP1 has been suggested to directly dephosphorylate WNK4, SPAK, and NCC. This phosphatase increases its abundance and activity when extracellular K+ is increased, which leads to distinct inhibitory mechanisms towards NCC. Inhibitor-1 (I1), oppositely, inhibits PP1 when phosphorylated by protein kinase A (PKA). CN inhibitors, like tacrolimus and cyclosporin A, increase NCC phosphorylation, giving an explanation to the Familial Hyperkalemic Hypertension-like syndrome that affects some patients treated with these drugs. CN inhibitors can prevent high K+-induced dephosphorylation of NCC. CN can also dephosphorylate and activate Kelch-like protein 3 (KLHL3), thus decreasing WNK abundance. PP2A and PP4 have been shown in in vitro models to regulate NCC or its upstream activators. However, no studies in native kidneys or tubules have been performed to test their physiological role in NCC regulation. This review focuses on these dephosphorylation mediators and the transduction mechanisms possibly involved in physiological states that require of the modulation of the dephosphorylation rate of NCC.
ABSTRACT
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Subject(s)
Neoplasms , Protein Phosphatase 1 , Child , Humans , Brain/metabolism , Protein Phosphatase 1/metabolism , Proteins/metabolismABSTRACT
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
ABSTRACT
The mammalian circadian clock at the hypothalamic suprachiasmatic nuclei (SCN) entrains biological rhythms to the 24-h cyclic environment, by encoding light-dark transitions in SCN neurons. Light pulses induce phase shifts in the clock and in circadian rhythms; photic signaling for circadian phase advances involves a nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) pathway, increasing the expression of Period (Per) genes. Effectors downstream of PKG remain unknown. Here we investigate the role of G-substrate (GS), a PKG substrate, in the hamster SCN. GS and phosphorylated G-substrate (p-GS) were present in a subset of SCN cells. Moreover, GS phosphorylation (p-GS/GS ratio) increased in SCN homogenates after light pulses delivered at circadian time (CT) 18 and intraperitoneal treatment with sildenafil, an inhibitor of phosphodiesterase 5 (a cGMP-specific phosphodiesterase). On the other hand, intracerebroventricular treatment with the PKG inhibitor KT5823, reduced photic phosphorylation of GS to basal levels. Since p-GS could act as a protein phosphatase 2 A (PP2A) inhibitor, we demonstrated physical interaction between p-GS and PP2A in SCN homogenates, and also a light-pulse dependent decrease of PP2A activity. Intracerebroventricular treatment with okadaic acid, a PP2A inhibitor, increased the magnitude of light-induced phase advances of locomotor rhythms. We provide evidence on the physiological phosphorylation of GS as a new downstream effector in the NO/cGMP/PKG photic pathway in the hamster SCN, including its role as a PP2A inhibitor.
Subject(s)
Circadian Clocks , Animals , Cricetinae , Cyclic GMP , Nerve Tissue Proteins , Signal Transduction , Suprachiasmatic NucleusABSTRACT
Plant growth-promoting rhizobacteria (PGPR) stimulate plant growth, but the underlying mechanism is poorly understood. In this study, we asked whether PROTEIN PHOSPHATASE 2A (PP2A), a regulatory molecular component of stress, growth, and developmental signaling networks in plants, contributes to the plant growth responses induced by the PGPR Azospirillum brasilense (wild type strain Sp245 and auxin deficient strain FAJ0009) and Pseudomonas simiae (WCS417r). The PGPR were co-cultivated with Arabidopsis wild type (WT) and PP2A (related) mutants. These plants had mutations in the PP2A catalytic subunits (C), and the PP2A activity-modulating genes LEUCINE CARBOXYL METHYL TRANSFERASE 1 (LCMT1) and PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (PTPA). When exposed to the three PGPR, WT and all mutant Arabidopsis revealed the typical phenotype of PGPR-treated plants with shortened primary root and increased lateral root density. Fresh weight of plants generally increased when the seedlings were exposed to the bacteria strains, with the exception of catalytic subunit double mutant c2c5. The positive effect on root and shoot fresh weight was especially pronounced in Arabidopsis mutants with low PP2A activity. Comparison of different mutants indicated a significant role of the PP2A catalytic subunits C2 and C5 for a positive response to PGPR.
ABSTRACT
Nile tilapia (Oreochromis niloticus) is a freshwater phytoplanktivorous fish species reported to accumulate and tolerate large amounts of cyanotoxins such as microcystins (MCs). The present study aimed to investigate molecular responses to the acute exposure of Nile tilapia to the Microcystin-LA analogue (MC-LA). Thus, the specimens were sublethally exposed to 1000⯵gâ¯kg-1 of MC-LA for 12, 24, 48, and 96â¯h. Gene expression of PP1, PP2A, GST, GPX and actin was analyzed by quantitative PCR. The protein abundance profile of PP2A was determined by immunoblotting, while the integrity of its biological function was assessed by a phosphatase enzymatic assay. PP2A activity was significantly and strongly reduced by MC-LA. A resulting feedback mechanism significantly increased PP2A gene expression and protein abundance in all assessed times. However, a recovery of that phosphatase activity was not observed. In this study, the observed increase in GPX gene expression was the only response that could be directly related to the unknown factors associated to the fish survival to such high dose exposure.
Subject(s)
Cichlids/metabolism , Microcystins/toxicity , Actins/genetics , Actins/metabolism , Animals , Cichlids/genetics , Gene Expression Regulation/drug effects , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Injections, Intraperitoneal , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolismABSTRACT
Since the original description as potent antianginal compounds, phosphodiesterase 5A inhibitors have continuously increased their possible therapeutic applications. In the heart, Sildenafil was shown to protect against an ischemic insult by decreasing cardiac Na+/H+ exchanger (NHE1) activity, action that was mediated by protein kinase G. p38 mitogen activated protein kinase (p38MAPK) activation was described in cardiac ischemia, but its precise role remains elusive. It has been shown that p38MAPK is activated by protein kinase G (PKG) in certain non-cardiac tissues, while in others modulates NHE1 activity. Current study was aimed to seek the role of p38MAPK in the Sildenafil-triggered pathway leading to NHE1 inhibition in myocardium. Rat isolated papillary muscles were used to evaluate NHE1 activity during intracellular pH recovery from an acidic load. Protein kinases phosphorylation (activation) was determined by western blot. Sustained acidosis promoted NHE1 hyperactivity by enhancing Ser703 phosphorylation, effect that was blunted by Sildenafil. p38MAPK inhibition reversed the effect of Sildenafil on NHE1. Activation of p38MAPK, by Sodium Arsenite or Anisomycin, mimicked the inhibitory effect of Sildenafil on the exchanger. Consistently, Sildenafil induced p38MAPK phosphorylation/activation during acidosis. Neither Sildenafil nor p38MAPK inhibition affected extracellular signal-regulated kinases 1/2 phosphorylation, kinases upstream NHE1. Furthermore, inhibition of NHE1 after p38MAPK activation was precluded by preventing the activation of protein phosphatase 2A with Okadaic Acid. Taken together, these results suggest that activation of p38MAPK is a necessary step to trigger the inhibitory effect of Sildenafil on cardiac NHE1 activity, thorough a mechanism that involves protein phosphatase 2A-mediated exchanger dephosphorylation.
Subject(s)
Heart/drug effects , Myocardium/metabolism , Sildenafil Citrate/pharmacology , Sodium-Hydrogen Exchangers/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , Acidosis/enzymology , Acidosis/metabolism , Acidosis/pathology , Animals , Enzyme Activation/drug effects , MAP Kinase Signaling System/drug effects , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myocardium/cytology , Myocardium/pathology , Phosphorylation/drug effects , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Sodium-Hydrogen Exchanger 1/metabolismABSTRACT
WNK lysine-deficient protein kinase 4 (WNK4) is an important regulator of renal salt handling. Mutations in its gene cause pseudohypoaldosteronism type II, mainly arising from overactivation of the renal Na+/Cl- cotransporter (NCC). In addition to full-length WNK4, we have observed faster migrating bands (between 95 and 130 kDa) in Western blots of kidney lysates. Therefore, we hypothesized that these could correspond to uncharacterized WNK4 variants. Here, using several WNK4 antibodies and WNK4-/- mice as controls, we showed that these bands indeed correspond to short WNK4 variants that are not observed in other tissue lysates. LC-MS/MS confirmed these bands as WNK4 variants that lack C-terminal segments. In HEK293 cells, truncation of WNK4's C terminus at several positions increased its kinase activity toward Ste20-related proline/alanine-rich kinase (SPAK), unless the truncated segment included the SPAK-binding site. Of note, this gain-of-function effect was due to the loss of a protein phosphatase 1 (PP1)-binding site in WNK4. Cotransfection with PP1 resulted in WNK4 dephosphorylation, an activity that was abrogated in the PP1-binding site WNK4 mutant. The electrophoretic mobility of the in vivo short variants of renal WNK4 suggested that they lack the SPAK-binding site and thus may not behave as constitutively active kinases toward SPAK. Finally, we show that at least one of the WNK4 short variants may be produced by proteolysis involving a Zn2+-dependent metalloprotease, as recombinant full-length WNK4 was cleaved when incubated with kidney lysate.
Subject(s)
Kidney/enzymology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Animals , Kidney/chemistry , Male , Mice , Mice, Knockout , Organ Specificity , Phosphorylation , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/genetics , Sequence DeletionABSTRACT
Cdc25B phosphatases are involved in cell cycle checkpoints and have become a possible target for developing new anticancer drugs. A more rational design of Cdc25B ligands would benefit from detailed knowledge of its tertiary structure. The conformational flexibility of the C-terminal region of the Cdc25B catalytic domain has been debated recently and suggested to play an important structural role. Here, a combination of experimental NMR measurements and molecular dynamics simulations for the complete catalytic domain of the Cdc25B phosphatase is presented. The stability of the C-terminal α-helix is confirmed, but the last 20 residues in the complete catalytic domain are very flexible, partially occlude the active site and may establish transient contacts with the protein core. This flexibility in the C-terminal tail may modulate the molecular recognition of natural substrates and competitive inhibitors by Cdc25B. Proteins 2016; 84:1567-1575. © 2016 Wiley Periodicals, Inc.
Subject(s)
Recombinant Fusion Proteins/chemistry , cdc25 Phosphatases/chemistry , Amino Acid Motifs , Catalytic Domain , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Pliability , Protein Stability , Protein Structure, Secondary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolismABSTRACT
Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1ß, IL-12p70 and IL-10 in human macrophages.
Subject(s)
Cytokines/immunology , Host-Parasite Interactions , Leishmania mexicana/enzymology , Macrophages/immunology , Protein Phosphatase 2C/metabolism , Protozoan Proteins/metabolism , Animals , Biological Transport , Culture Media/chemistry , Cytokines/biosynthesis , Humans , Interleukin-10/biosynthesis , Interleukin-10/immunology , Leishmania mexicana/genetics , Leishmania mexicana/immunology , Leishmania mexicana/ultrastructure , Mice , Microscopy, Electron , Protein Phosphatase 2C/immunology , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protozoan Proteins/immunology , Signal TransductionABSTRACT
In a recent review published in Molecular Neurobiology, Kamat and colleagues (Mol Neurobiol. 2014 Dec;50(3):852-65) highlighted the cellular and molecular mechanisms involved in Okadaic acid (OKA)-induced neurotoxicity. In this review, the authors underline a wide range of pathological signaling pathways involved in OKA-induced neurotoxicity; however, the role of glutamate was only briefly described. We believe that the hyperactivation of the glutamatergic system is a key pathophysiological player in OKA-induced neurotoxicity and deserves serious attention. In this commentary, we propose an integrative model linking glutamate and PP2A and put forward some unanswered questions.
Subject(s)
Enzyme Inhibitors/pharmacology , Glutamic Acid/metabolism , Protein Phosphatase 2/antagonists & inhibitors , Animals , Humans , Models, Biological , Okadaic Acid/pharmacology , Protein Phosphatase 2/metabolism , Receptors, N-Methyl-D-Aspartate/metabolismABSTRACT
In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation.
Subject(s)
Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/genetics , Leishmania major/genetics , Peptide Chain Initiation, Translational , Protozoan Proteins/genetics , Trypanosoma brucei brucei/genetics , Amino Acid Sequence , Binding Sites , Eukaryotic Initiation Factor-4A/chemistry , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4G/chemistry , Eukaryotic Initiation Factor-4G/metabolism , Gene Expression Regulation , Leishmania major/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Trypanosoma brucei brucei/metabolismABSTRACT
Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory.
Subject(s)
Hippocampus/physiology , Memory/physiology , Neuronal Plasticity/physiology , Sleep, REM/physiology , Animals , Exploratory Behavior/physiology , Gene Expression , Male , Neuronal Plasticity/genetics , Rats , Rats, Wistar , Sleep, REM/genetics , Somatosensory Cortex/physiologyABSTRACT
Canonical Wnt signaling is altered in most cases of colorectal cancer. Experimental evidence indicates that protein phosphatase 2A (PP2A) may play either positive or negative roles in Wnt signaling but its precise in vivo functions remain elusive. In this work, using colon cultured cell lines we showed that basal PP2A activity is markedly reduced in malignant cells compared to non-malignant counterparts. We found that whereas normal or cancer cells displaying not altered Wnt signaling express mRNAs coding for PP2A-A scaffold α and ß isoforms, cancer cells which have altered Wnt signaling do not express the Aß isoform mRNA. Remarkably, we found that the Aß protein levels are lost in all colon cancer cells, and in patients' tumor biopsies. In addition, all cancer cells exhibit higher levels of RalA activity, compared to non-malignant cells. Rescue experiments to restore Aß expression in malignant RKO cells, diminished the RalGTPase activation and cell proliferation, indicating that the Aß isoform acts as tumor suppressor in colon cancer cells. Reciprocal co-immunoprecipitation and immunofluorescence studies showed that the PP2A-C and -Aα subunits, expressed in all colon cells, interact in vivo with ß-catenin only in malignant cells. Selective inhibition of PP2A did not significantly affect cellular apoptosis but induced dose-dependent negative effects in ß-catenin-mediated transcriptional activity and in cell proliferation of malignant cells, indicating that the residual PP2A activity found in malignant cells, mediated by -C and Aα core subunits, is essential to maintain active Wnt signaling and cell proliferation in colon cancer cells.
Subject(s)
Colonic Neoplasms/genetics , Protein Phosphatase 2/genetics , Protein Subunits/genetics , Wnt Signaling Pathway/genetics , Cell Line, Tumor , GTP Phosphohydrolases/genetics , HT29 Cells , Humans , Protein Isoforms/genetics , RNA, Messenger/genetics , Transcription, Genetic/genetics , beta Catenin/geneticsABSTRACT
Protein phosphatase magnesium/manganese-dependent 1D (PPM1D) is a p53-induced phosphatase that functions as a negative regulator of stress response pathways and has oncogenic properties. However, the functional role of PPM1D in bladder cancer (BC) remains largely unknown. In the present study, lentivirus vectors carrying small hairpin RNA (shRNA) targeting PPM1D were used to explore the effects of PPM1D knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of PPM1D significantly inhibited cell growth and colony forming ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that PPM1D silencing increased the proportion of cells in the G0/G1 phase. Downregulation of PPM1D also inhibited 5637 cell tumorigenicity in nude mice. The results of the present study suggest that PPM1D plays a potentially important role in BC tumorigenicity, and lentivirus-mediated delivery of shRNA against PPM1D might be a promising therapeutic strategy for the treatment of BC.
Subject(s)
Animals , Humans , Male , Phosphoprotein Phosphatases/physiology , RNA Interference/physiology , RNA, Small Interfering/pharmacology , Urinary Bladder Neoplasms/pathology , Cell Line, Tumor , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Down-Regulation , Flow Cytometry , Gene Knockdown Techniques , Genetic Vectors , Lentivirus/genetics , Mice, Inbred BALB C , Mice, Nude , Phosphoprotein Phosphatases/genetics , Real-Time Polymerase Chain Reaction , Stress, Physiological/genetics , Tumor Stem Cell Assay , Urinary Bladder Neoplasms/therapyABSTRACT
Therapies that selectively target cancer cells for death have been the center of intense research recently. One potential therapy may involve apoptin proteins, which are able to induce apoptosis in cancer cells leaving normal cells unharmed. Apoptin was originally discovered in the Chicken anemia virus (CAV); however, human gyroviruses (HGyV) have recently been found that also harbor apoptin-like proteins. Although the cancer cell specific activity of these apoptins appears to be well conserved, the precise functions and mechanisms of action are yet to be fully elucidated. Strategies for both delivering apoptin to treat tumors and disseminating the protein inside the tumor body are now being developed, and have shown promise in preclinical animal studies.
Subject(s)
Antineoplastic Agents/pharmacology , Capsid Proteins/pharmacology , Drug Delivery Systems/methods , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Capsid Proteins/physiology , Cell Death/drug effects , Chicken anemia virus/chemistry , Gyrovirus/chemistry , Humans , Viral Proteins/isolation & purification , Viral Proteins/pharmacologyABSTRACT
Learning and memory are basic functions of the brain that allowed human evolution. It is well accepted that during learning and memory formation the dynamic establishment of new active synaptic connections is crucial. Persistent synaptic activation leads to molecular events that include increased release of neurotransmitters, increased expression of receptors on the postsynaptic neuron, thus creating a positive feedback that results in the activation of distinct signaling pathways that temporally and permanently alter specific patterns of gene expression. However, the epigenetic changes that allow the establishment of long term genetic programs that control learning and memory are not completely understood. Even less is known regarding the signaling events triggered by synaptic activity that regulate these epigenetic marks. Here we review the current understanding of the molecular mechanisms controlling activity-dependent gene transcription leading synaptic plasticity and memory formation. We describe how Ca(2+) entry through N-methyl-d-aspartate-type glutamate neurotransmitter receptors result in the activation of specific signaling pathways leading to changes in gene expression, giving special emphasis to the recent data pointing out different epigenetic mechanisms (histone acetylation, methylation and phosphorylation as well as DNA methylation and hydroxymethylation) underlying learning and memory.
Subject(s)
Epigenesis, Genetic/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Transcription, Genetic , Animals , Humans , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/physiologyABSTRACT
Protein phosphatase 4 (PP4) is a protein phosphatase 2A (PP2A)-related, okadaic acid-sensitive, serine/threonine protein phosphatase that shares 65% amino acid identity with PP2A. Numerous studies have shown that protein phosphatase is involved in the regulation of T cell signaling and activation. In this study, we investigated the effect of overexpression of PP4 on the expression of members of the MAP kinase family in Jurkat leukemia T cells, which had previously been stimulated with UV, 12-O-tetradecanoylphorbol-13-acetate (TPA), ionomycin and okadaic acid. We found that the overexpression of PP4 expressed relatively low activity in the absence of any kind of stimulation. However, TPA, UV or ionomycin treatment strongly increased the activity of PP4. In addition, Jurkat T cells, transfected with various expression plasmids and/or stimulated with TPA, UV or ionomycin strongly induced the c-Jun N-terminal kinase (JNK) and p38, whereas the extracellular signal-regulated kinase (ERK)-1/2 kinase pathway was weekly activated. Treatment of Jurkat T cells with okadaic acid, an inhibitor of PP2, also inhibited the increase of JNK and p38 activity induced by PP4. The effect of okadaic acid on the activity of PP4 was similar to that observed in Jurkat T cells treated with a dominant negative c-Jun (dn-jun). These results indicate that the activation of JNK and p38, but not ERKs, is a target for the PP4 activity in Jurkat leukemia T cells.