Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Front Vet Sci ; 11: 1418760, 2024.
Article in English | MEDLINE | ID: mdl-39100766

ABSTRACT

The interaction between viral proteins and host proteins plays a crucial role in the process of virus infecting cells. Tags such as HA, His, and Flag do not interfere with the function of fusion proteins and are commonly used to study protein-protein interactions. Adding these tags to viral proteins will address the challenge of the lack of antibodies for screening host proteins that interact with viral proteins during infection. Obtaining viruses with tagged fusion proteins is crucial. This study established a new reverse genetic system with T7 promoter and three plasmids, which efficiently rescued Newcastle disease virus (NDV) regardless of its ability to replicate in cells. Subsequently, using this system, NDV containing a HA-tagged structural protein and NDV carrying a unique tag on each structural protein were successfully rescued. These tagged viruses replicated normally and exhibited genetic stability. Based on tag antibodies, every NDV structural protein was readily detected and showed correct subcellular localization in infected cells. After infecting cells with NDV carrying HA-tagged M protein, several proteins interacting with the M protein during the infection process were screened using HA tag antibodies. The establishment of this system laid the foundation for comprehensive exploration of the interaction between NDV proteins and host proteins.

2.
J Agric Food Chem ; 72(8): 4217-4224, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38356383

ABSTRACT

Vanillic acid (VA), as a plant-derived phenolic acid compound, has widespread applications and good market prospects. However, the traditional production process cannot meet market demand. In this study, Pseudomonas putida KT2440 was used for de novo biosynthesis of VA. Multiple metabolic engineering strategies were applied to construct these P. putida-based cell factories, including the introduction of a Hs-OMTopt, engineering the cofactor S-adenosylmethionine supply pathway through the overexpression of metX and metH, reforming solubility of Hs-OMTopt, increasing a second copy of Hs-OMTopt, and the optimization of the fermentation medium. The resulting strain, XCS17, de novo biosynthesized 5.4 g/L VA from glucose in a fed-batch fermentation system; this is the highest VA production titer reported up to recently. This study showed that P. putida KT2440 is a robust platform for achieving the effective production of phenolic acids.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Vanillic Acid/metabolism , Metabolic Engineering , Hydroxybenzoates/metabolism
3.
Biosens Bioelectron ; 247: 115862, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38147718

ABSTRACT

Fluorescent biosensors are crucial experimental tools for live-cell imaging and the quantification of different biological analytes. Fluorescent protein (FP)-based biosensors are widely used for imaging applications in living systems. However, the use of FP-based biosensors is hindered by their large size, poor photostability, and laborious genetic manipulations required to improve their properties. Recently, semisynthetic fluorescent biosensors have been developed to address the limitations of FP-based biosensors using chemically modified fluorescent probes and self-labeling protein tag/peptide tags or DNA/RNA-based hybrid systems. Semisynthetic biosensors have unique advantages, as they can be easily modified using different probes. Moreover, the self-labeling protein tag, which labels synthetically developed ligands via covalent bonds, has immense potential for biosensor development. This review discusses the recent progress in different types of fluorescent biosensors for metabolites, protein aggregation and degradation, DNA methylation, endocytosis and exocytosis, membrane tension, and cellular viscosity. Here, we explain in detail the design strategy and working principle of these biosensors. The information presented will help the reader to create new biosensors using self-labeling protein tags for various applications.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Proteins/chemistry , Fluorescent Dyes/chemistry , DNA Methylation
4.
Yi Chuan ; 45(2): 165-175, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36927663

ABSTRACT

The currently widely used CRISPR-Cas9 genome editing technology enables the editing of target genes (knock-out or knock-in) with high accuracy and efficiency. Guided by the small guide RNA, the Cas9 nuclease induces a DNA double-strand break at the targeted genomic locus. The DNA double-strand break can be repaired by the homology-directed repair pathway in the presence of a repair template. With the repair template containing the coding sequence of a fluorescent tag, the targeted gene can be inserted with the sequence of a fluorescent tag at the designed position. The genome editing mediated labeling of endogenous proteins with fluorescent tags avoids the potential artifacts caused by gene overexpression and substantially improves the reproductivity of imaging experiments. This protocol focuses on creating mammalian cell lines with endogenous proteins tagged with fluorescent proteins or self-labeling protein tags using CRISPR-Cas9 genome editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Gene Editing/methods , CRISPR-Associated Protein 9/genetics , Recombinational DNA Repair , DNA , Mammals/genetics
5.
Comput Struct Biotechnol J ; 20: 5275-5286, 2022.
Article in English | MEDLINE | ID: mdl-36212535

ABSTRACT

Self-labelling protein tags (SLPs) are resourceful tools that revolutionized sensor imaging, having the versatile ability of being genetically fused with any protein of interest and undergoing activation with alternative probes specifically designed for each variant (namely, SNAP-tag, CLIP-tag and Halo-tag). Commercially available SLPs are highly useful in studying molecular aspects of mesophilic organisms, while they fail in characterizing model organisms that thrive in harsh conditions. By applying an integrated computational and structural approach, we designed a engineered variant of the alkylguanine-DNA-alkyl-transferase (OGT) from the hyper-thermophilic archaeon Saccharolobus solfataricus (SsOGT), with no DNA-binding activity, able to covalently react with O6 -benzyl-cytosine (BC-) derivatives, obtaining the first thermostable CLIP-tag, named SsOGT-MC8 . The presented construct is able to recognize and to covalently bind BC- substrates with a marked specificity, displaying a very low activity on orthogonal benzyl-guanine (BG-) substrate and showing a remarkable thermal stability that broadens the applicability of SLPs. The rational mutagenesis that, starting from SsOGT, led to the production of SsOGT-MC8 was first evaluated by structural predictions to precisely design the chimeric construct, by mutating specific residues involved in protein stability and substrate recognition. The final construct was further validated by biochemical characterization and X-ray crystallography, allowing us to present here the first structural model of a CLIP-tag establishing the molecular determinants of its activity, as well as proposing a general approach for the rational engineering of any O6 -alkylguanine-DNA-alkyl-transferase turning it into a SNAP- and a CLIP-tag variant.

6.
Protein Sci ; 31(5): e4292, 2022 05.
Article in English | MEDLINE | ID: mdl-35481658

ABSTRACT

Studying pathogenic effects of amyloids requires homogeneous amyloidogenic peptide samples. Recombinant production of these peptides is challenging due to their susceptibility to aggregation and chemical modifications. Thus, chemical synthesis is primarily used to produce amyloidogenic peptides suitable for high-resolution structural studies. Here, we exploited the shielded environment of protein condensates formed via liquid-liquid phase separation (LLPS) as a protective mechanism against premature aggregation. We designed a fusion protein tag undergoing LLPS in Escherichia coli and linked it to highly amyloidogenic peptides, including ß amyloids. We find that the fusion proteins form membraneless organelles during overexpression and remain fluidic-like. We also developed a facile purification method of functional Aß peptides free of chromatography steps. The strategy exploiting LLPS can be applied to other amyloidogenic, hydrophobic, and repetitive peptides that are otherwise difficult to produce.


Subject(s)
Amyloid , Escherichia coli , Amyloid beta-Peptides/genetics , Escherichia coli/genetics , Recombinant Proteins
7.
Bioresour Technol ; 351: 126949, 2022 May.
Article in English | MEDLINE | ID: mdl-35257882

ABSTRACT

2'-Fucosyllactose (2'-FL) is a kind of fucosylated lactose of human milk oligosaccharides (HMOs). In this work, Escherichia coli MG1655 was metabolically engineered to increase 2'-FL production. The 2'-FL titer was raised from 0.0118 to 0.8062 g/L by increasing three gene copies of α1,2-fucosyltransferase (FutC) and by deleting the lon, wcaJ, lacZ, and lacI genes in the competitive pathways. Additionally, the 2'-FL titer was raised to 2.9 g/L by fusing a TrxA tag at the N-terminus of FutC, and then to 3.4 g/L by deleting glutathione reductase (Gor). Finally, the 2'-FL reached 3.3 g/L in the final strain E. coli MG27 through the de novo pathway in shake flask, and reached 10.3 g/L in a 3-L fermentor.


Subject(s)
Escherichia coli , Metabolic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Humans , Milk, Human , Trisaccharides
8.
Methods Mol Biol ; 2350: 253-265, 2021.
Article in English | MEDLINE | ID: mdl-34331290

ABSTRACT

Observing the localization, the concentration, and the distribution of proteins in cells or organisms is essential to understand theirs functions. General and versatile methods allowing multiplexed imaging of proteins under a large variety of experimental conditions are thus essential for deciphering the inner workings of cells and organisms. Here, we present a general method based on the non-covalent labeling of a small protein tag, named FAST (fluorescence-activating and absorption-shifting tag), with various fluorogenic ligands that light up upon labeling, which makes the simple, robust, and versatile on-demand labeling of fusion proteins in a wide range of experimental systems possible.


Subject(s)
Fluorescent Dyes , Recombinant Fusion Proteins/metabolism , Staining and Labeling/methods , Animals , Cell Line , Flow Cytometry , Humans , Microscopy, Fluorescence/methods , Molecular Structure , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Zebrafish
9.
Plant Cell Physiol ; 62(8): 1259-1268, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34233356

ABSTRACT

Fluorescent probes are powerful tools for visualizing cellular and subcellular structures, their dynamics and cellular molecules in living cells and enable us to monitor cellular processes in a spatiotemporal manner within complex and crowded systems. In addition to popular fluorescent proteins, a wide variety of small-molecule dyes have been synthesized through close association with the interdisciplinary field of chemistry and biology, ranging from those suitable for labeling cellular compartments such as organelles to those for labeling intracellular biochemical and biophysical processes and signaling. In recent years, self-labeling technologies including the SNAP-tag system have allowed us to attach these dyes to cellular domains or specific proteins and are beginning to be employed in plant studies. In this mini review, we will discuss the current range of synthetic fluorescent probes that have been exploited for live-cell imaging and the recent advances in the application that enable genetical tagging of synthetic probes in plant research.


Subject(s)
Fluorescent Dyes , Imaging, Three-Dimensional/methods , Intravital Microscopy/methods , Microscopy, Fluorescence/methods , Plant Cells/physiology
10.
Front Chem ; 9: 641355, 2021.
Article in English | MEDLINE | ID: mdl-33842432

ABSTRACT

Single Molecule Localization Microscopy (SMLM) is an imaging method that allows for the visualization of structures smaller than the diffraction limit of light (~200 nm). This is achieved through techniques such as stochastic optical reconstruction microscopy (STORM) and photoactivated localization microscopy (PALM). A large part of obtaining ideal imaging of single molecules is the choice of the right fluorescent label. An upcoming field of protein labeling is incorporating unnatural amino acids (UAAs) with an attached fluorescent dye for precise localization and visualization of individual molecules. For this technique, fluorescent probes are conjugated to UAAs and are introduced into the protein of interest (POI) as a label. Here we contrast this labeling method with other commonly used protein-based labeling methods such as fluorescent proteins (FPs) or self-labeling tags such as Halotag, SNAP-tags, and CLIP-tags, and highlight the benefits and shortcomings of the site-specific incorporation of UAAs coupled with fluorescent dyes in SMLM.

11.
J Enzyme Inhib Med Chem ; 36(1): 85-97, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33121288

ABSTRACT

SNAP-tag ® is a powerful technology for the labelling of protein/enzymes by using benzyl-guanine (BG) derivatives as substrates. Although commercially available or ad hoc produced, their synthesis and purification are necessary, increasing time and costs. To address this limitation, here we suggest a revision of this methodology, by performing a chemo-enzymatic approach, by using a BG-substrate containing an azide group appropriately distanced by a spacer from the benzyl ring. The SNAP-tag ® and its relative thermostable version (SsOGT-H5 ) proved to be very active on this substrate. The stability of these tags upon enzymatic reaction makes possible the exposition to the solvent of the azide-moiety linked to the catalytic cysteine, compatible for the subsequent conjugation with DBCO-derivatives by azide-alkyne Huisgen cycloaddition. Our studies propose a strengthening and an improvement in terms of biotechnological applications for this self-labelling protein-tag.


Subject(s)
Azides/chemistry , DNA Modification Methylases/metabolism , Fluorescent Dyes/chemistry , Azides/chemical synthesis , DNA Modification Methylases/chemistry , Fluorescent Dyes/chemical synthesis , HEK293 Cells , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Substrate Specificity
12.
J Chromatogr A ; 1631: 461567, 2020 Nov 08.
Article in English | MEDLINE | ID: mdl-32980800

ABSTRACT

The separation of heterogeneous protein mixtures has always been characterized by a trade-off between purity and yield. One way this issue has been addressed in the past is by recombinantly modifying protein to improve separations. Such modifications are mostly employed in the form of tags used specifically for affinity chromatography, though it is also possible to make changes to a protein that will have a sizeable impact on its hydrophobicity and charge/charge distribution. As such, it should also be possible to use protein tags to modulate phase separations and protein-resin binding kinetics when performing ion exchange chromatography. Here, we employed a three-step purification scheme on E. coli expressed, His-tagged, human papilloma virus 16 L1-based recombinant proteins (rHPV 16 L1) that consisted of an inclusion body (IB) wash step, a diethylaminoethyl (DEAE) anion exchange chromatography (AEX) step, and an immobilized metal affinity chromatography (IMAC) polishing step. Purification of the wild type rHPV 16 L1 protein (WT) was characterized by substantial losses during the IB wash but relatively high yield over the DEAE column. In contrast, purification of modified rHPV 16 L1, a chimeric version of the WT protein that had the last 34 amino acids replaced with an MHC class II multi-epitope insert derived from tetanus toxin and diphtheria toxin (WTΔC34-2TEp), was characterized by little to no losses in the IB wash but had a relatively low yield over the DEAE column. Since the fate of these proteins was to be used in vaccine formulations, it is important to note that the modifications made to the WTΔC34-2TEp protein had little to no effect on its ability to assemble into virus-like particles (VLPs). These results demonstrate that modifications of the WT protein via the recombinant insertion of immunofunctional polypeptides can modulate both phase-based separation and charge-based chromatographic processes. Additionally, incorporation of the specific, multi-epitope tag used in this study may prove to be beneficial in recombinant HPV vaccine development due to its potential to improve phase separation yield and vaccine immunogenicity without inhibiting VLP formation.


Subject(s)
Escherichia coli , Papillomavirus Vaccines , Chromatography, Affinity , Epitopes , Escherichia coli/genetics , Human papillomavirus 16/genetics , Humans , Solubility
13.
Biotechnol Adv ; 43: 107583, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32634476

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are relatively new enzymes that have been discovered 10 years ago. LPMOs comprise a diverse group of enzymes which play a pivotal role in the depolymerization of sugar-based biopolymers including cellulose, hemicellulose, chitin, and starch. Their mechanism of action relies on the correct coordination of a copper ion in the active site, which is partly composed of the N-terminal histidine. Therefore, correct secretion and folding of these copper-enzymes is fundamental for obtaining a catalytic activity. LPMOs occur in all kingdoms of life; they have been found in viruses, bacteria and eukaryotes, including fungi, plants and animals. In many cases, using homologous expression of these proteins is not feasible and an alternative organism, which can be cultured and is able to heterologously express the protein of interest, is required for studying enzyme properties. Therefore, we made an extensive compilation of expression techniques used for LPMOs the expression and characterization of which have been reported to date. In the current review, we provide a summary of the different techniques, including expression hosts and vectors, secretion methods, and culturing conditions, that have been used for the overexpression and production of this important class of enzymes at laboratory scale. Herein, we compare these techniques and assess their advantages and disadvantages.


Subject(s)
Mixed Function Oxygenases , Polysaccharides , Animals , Cellulose , Chitin , Fungi/genetics , Mixed Function Oxygenases/genetics
14.
Appl Microbiol Biotechnol ; 104(6): 2411-2425, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31993706

ABSTRACT

Escherichia coli is the most widely used heterologous protein expression system. However, this system remains a challenge due to the low solubility of proteins, insufficient yield, and inclusion body formation. Numerous approaches have sought to address these issues. The use of a fusion tag is one of the most powerful strategies for obtaining large amounts of heterologous protein in E. coli expression system. Here, recent advances in fusion tags that increase the expression of proteins are reviewed. In addition, proposed concepts for designing peptide tags to increase protein expression are discussed.


Subject(s)
Cloning, Molecular/methods , Escherichia coli/genetics , Gene Expression , Recombinant Fusion Proteins/biosynthesis , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Inclusion Bodies/chemistry , Protein Processing, Post-Translational , Recombinant Fusion Proteins/isolation & purification
15.
Genes Cells ; 25(1): 41-53, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31733161

ABSTRACT

Proteomic analysis requires protein tags that enable high-throughput handling; however, versatile tags that can be used in in vitro expression systems are currently lacking. In this study, we developed an insoluble protein tag, INSOL-tag, derived from human transcription factor MafG. The INSOL-tagged target protein is expressed in a eukaryotic in vitro expression system and recovered as a pellet following centrifugation at 19,000 × g for 20 min. Comparisons of the target protein recovery rates of GST-tag and INSOL-tag using 111 cytoplasmic proteins revealed a fourfold increase in the yield of INSOL-tagged proteins. Using 267 cancer antigens purified with INSOL-tag, we subsequently developed an INSOL-CTA array method, for profiling autoantibodies in sera of cancer patients. The detection limit of the array was approximately 11.1 pg IgG, and the correlation with ELISA was high (R2  = .993, .955). Moreover, when autoantibody profiling of digestive cancer patient sera was performed, antigen spreading was observed. These data suggest that INSOL-tag is a versatile tag that can insolubilize a wide range of target proteins. It is therefore expected to become a powerful tool in comprehensive protein preparation for protein arrays, antibody production, and mass spectrometry.


Subject(s)
MafG Transcription Factor/isolation & purification , MafG Transcription Factor/metabolism , Proteomics/methods , Repressor Proteins/isolation & purification , Repressor Proteins/metabolism , High-Throughput Screening Assays/methods , Humans , MafG Transcription Factor/genetics , Mass Spectrometry/methods , Protein Array Analysis/methods , Protein Engineering/methods , Proteome/genetics , Repressor Proteins/genetics , Transcription Factors/metabolism
16.
Extremophiles ; 24(1): 81-91, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31555904

ABSTRACT

The specific labelling of proteins in recent years has made use of self-labelling proteins, such as the SNAP-tag® and the Halotag®. These enzymes, by their nature or suitably engineered, have the ability to specifically react with their respective substrates, but covalently retaining a part of them in the catalytic site upon reaction. This led to the synthesis of substrates conjugated with, e.g., fluorophores (proposing them as alternatives to fluorescent proteins), but also with others chemical groups, for numerous biotechnological applications. Recently, a mutant of the OGT from Saccharolobus solfataricus (H5) very stable to high temperatures and in the presence of physical and chemical denaturing agents has been proposed as a thermostable SNAP-tag® for in vivo and in vitro harsh reaction conditions. Here, we show two new thermostable OGTs from Thermotoga neapolitana and Pyrococcus furiosus, which, respectively, display a higher catalytic activity and thermostability respect to H5, proposing them as alternatives for in vivo studies in these extreme model organisms.


Subject(s)
Biotechnology , Enzyme Stability , Hot Temperature , Pyrococcus furiosus
17.
Biochem Biophys Res Commun ; 511(4): 800-805, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30837154

ABSTRACT

The antibiotic moenomycin A is a phosphoglycerate derivative with a C25-moenocinyl chain and a branched oligosaccharide. Formation of the C25-chain is catalyzed by the enzyme MoeN5 with geranyl pyrophosphate (GPP) and the sugar-linked 2-Z,E-farnesyl-3-phosphoglycerate (FPG) as its substrates. Previous complex crystal structures with GPP and long-chain alkyl glycosides suggested that GPP binds to the S1 site in a similar way as in most other α-helical prenyltransferases (PTs), and FPG is likely to assume a bent conformation in the S2 site. However, two FPG derivatives synthesized in the current study were found in the S1 site rather than S2 in their complex crystal structures with MoeN5. Apparently S1 is the preferred site for prenyl-containing ligand, and S2 binding may proceed only after S1 is occupied. Thus, like most trans-type PTs, MoeN5 may employ a sequential ionization-condensation-elimination mechanism that involves a carbocation intermediate.


Subject(s)
Bacterial Proteins/metabolism , Dimethylallyltranstransferase/metabolism , Streptomyces/metabolism , 2,3-Diphosphoglycerate/chemistry , 2,3-Diphosphoglycerate/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bambermycins/metabolism , Crystallography, X-Ray , Dimethylallyltranstransferase/chemistry , Molecular Docking Simulation , Protein Conformation , Sequence Alignment , Streptomyces/chemistry , Substrate Specificity
18.
Methods Enzymol ; 617: 287-322, 2019.
Article in English | MEDLINE | ID: mdl-30784406

ABSTRACT

DNA nanostructures serve as the ideal scaffolds to assemble materials of interest. Among these, proteins are of particularly interesting class of molecules to assemble because of their huge functional variability. Sequence-specific DNA binding proteins have been applied as adaptors to stably locate the fused proteins at defined positions of DNA scaffold in high loading yields. The strategy allows to control the number of enzyme molecules and to maintain the catalytic activity. By fusing a chemoselective self-ligating protein tag to the DNA binding protein, the modular adaptors formed covalent bonds at respective sequences on DNA scaffold with fast reaction kinetics. Application of a set of orthogonal modular adaptors enables spatial organization of multiple types of enzymes.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Enzymes, Immobilized/chemistry , Nanostructures/chemistry , Cross-Linking Reagents/chemistry , Microscopy, Atomic Force/methods , Models, Molecular , Nucleic Acid Conformation , Recombinant Fusion Proteins/chemistry
19.
Bio Protoc ; 9(21): e3414, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-33654913

ABSTRACT

Advances in fluorescence microscopy (FM), electron microscopy (EM), and correlative light and EM (CLEM) offer unprecedented opportunities for studying diverse proteins and nanostructures involved in fundamental cell biology. It is now possible to visualize and quantify the spatial organization of cellular proteins and other macromolecules by FM, EM, and CLEM. However, tagging and tracking cellular proteins across size scales is restricted by the scarcity of methods for attaching appropriate reporter chemistries to target proteins. Namely, there are few genetic tags compatible with EM. To overcome these issues we developed Versatile Interacting Peptide (VIP) tags, genetically-encoded peptide tags that can be used to image proteins by fluorescence and EM. VIPER, a VIP tag, can be used to label cellular proteins with bright, photo-stable fluorophores for FM or electron-dense nanoparticles for EM. In this Bio-Protocol, we provide an instructional guide for implementing VIPER for imaging a cell-surface receptor by CLEM. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER ( Doh et al., 2019a and 2019b).

20.
Bio Protoc ; 9(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-32665966

ABSTRACT

Genetically-encoded tags are useful tools for multicolor and multi-scale cellular imaging. Versatile Interacting Peptide (VIP) tags, such as VIPER, are new genetically-encoded tags that can be used in various imaging applications. VIP tags consist of a coiled-coil heterodimer, with one peptide serving as the genetic tag and the other ("probe peptide") delivering a reporter compatible with imaging. Heterodimer formation is rapid and specific, allowing proteins to be selectively labeled for live-cell and fixed-cell imaging. In this Bio-Protocol, we include a detailed guide for implementing the VIPER technology for imaging receptors on live cells and intracellular targets in fixed cells. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER (Doh et al., 2019a and 2019b).

SELECTION OF CITATIONS
SEARCH DETAIL