Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Metabolomics ; 20(4): 81, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066839

ABSTRACT

INTRODUCTION: Understanding why subjects with overweight and with obesity vary in their response to dietary interventions is of major interest for developing personalized strategies for body mass regulation. OBJECTIVES: The aim of this study was to investigate the relationship between changes in the urine metabolome and body mass during a breakfast meal intervention. Furthermore, we aimed to elucidate if the baseline urine metabolome could predict the response to the two types of breakfast meals (high versus low protein) during the intervention. METHODS: A total of 75 young, women with overweight were randomly allocated to one of two intervention groups: (1) High-protein (HP) or (2) low-protein (LP) breakfast as part of their habitual diet during a 12-week intervention. Beside the breakfast meal, participants were instructed to eat their habitual diet and maintain their habitual physical activity level. Nuclear magnetic resonance-based metabolomics was conducted on urine samples collected at baseline (wk 0), mid-intervention (wk 6), and at endpoint (wk 12). At baseline and endpoint, body mass was measured and DXA was used to measure lean body mass and fat mass. RESULTS: The baseline urine metabolite profile showed a slightly higher correlation (R2 = 0.56) to body mass in comparison with lean body mass (R2 = 0.51) and fat mass (R2 = 0.53). Baseline 24-h urinary excretion of trigonelline (p = 0.04), N, N-dimethylglycine (p = 0.02), and trimethylamine (p = 0.03) were significantly higher in individuals who responded with a reduction in body mass to the HP breakfast. CONCLUSIONS: Differences in the urine metabolome were seen for women that obtained a body weight loss in the response to the HP breakfast intervention and women who did not obtain a body weight loss, indicating that the urine metabolome contains information about the metabolic phenotype that influences the responsiveness to dietary interventions.


Subject(s)
Body Composition , Breakfast , Metabolome , Overweight , Humans , Female , Overweight/urine , Overweight/metabolism , Overweight/diet therapy , Adult , Body Mass Index , Metabolomics/methods , Young Adult , Dietary Proteins/administration & dosage
2.
Anal Bioanal Chem ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888602

ABSTRACT

Adulteration of diesel fuel poses a major concern in most developing countries including Ghana despite the many regulatory schemes adopted. The solvent tracer analysis approach currently used in Ghana has over the years suffered several limitations which affect the overall implementation of the scheme. There is therefore a need for alternative or supplementary tools to help detect adulteration of automotive fuel. Herein we describe a two-level classification method that combines NMR spectroscopy and machine learning algorithms to detect adulteration in diesel fuel. The training sets used in training the machine learning algorithms contained 20-40% w/w adulterant, a level typically found in Ghana. At the first level, a classification model is built to classify diesel samples as neat or adulterated. Adulterated samples are passed on to the second stage where a second classification model identifies the type of adulterant (kerosene, naphtha, or premix) present. Samples were analyzed by 1H NMR spectroscopy and the data obtained were used to build and validate support vector machine (SVM) classification models at both levels. At level 1, the SVM model classified all 200 samples with only 2.5% classification errors after validation. The level 2 classification model developed had no classification errors for kerosene and premix in diesel. However, 2.5% classification error was recorded for samples adulterated with naphtha. Despite the great performance of the proposed schemes, it showed significantly erratic predictions with adulterant levels below 20% w/w as the training sets for both models contained adulterants above 20% w/w. The proposed method, nevertheless, proved to be a potential tool that could serve as an alternative to the marking system in Ghana for the fast detection of adulterants in diesel.

3.
Heliyon ; 10(1): e23562, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173535

ABSTRACT

A complete chemical analysis of significant intermolecular interactions of l-Valine (L-Val) and l-Phenylalanine (L-Phe) with Mephenesin (MEPN) molecules in aqueous solution has been studied by different physicochemical methodologies at various temperatures (T = 298.15 K-313.15 K at an interval of 5 K) and concentrations (0.001 mol kg-1, 0.003 mol kg-1, 0.005 mol kg-1) of aqueous MEPN solution. The limiting apparent molar volume (φV0) and experimental slope (SV*) values are found from the equation of Masson, viscosity A and B-coefficient determined using the equation of Jones-Doles, molar refraction (RM) and limiting molar refraction (RM0) derived by the Lorentz-Lorenz equation, express that in our experimental solution of amino acids (AAs) in aqueous MEPN, the solute-solvent interaction predominates over the solute-solute and solvent-solvent interactions for these ternary solutions. These are also justified by the measurement of various thermodynamic parameters, free energy of activation of viscous flow per mole of solvent(Δµ1°#) and solute (Δµ2°#), activation of viscous flow of enthalpies (ΔH°#) and entropies (ΔS°#). The characteristics of structure-breaking of solutes in the aqueous drug solution have been identified by Hepler's method and dB/dT value. The spectroscopic methods like UV-visible and proton-NMR studies help to explicate the strong AA-MEPN interactions in the solution phase and obtain a good correlation with theoretical studies. Theoretical investigations are checked to authenticate the experimental observations and according to both studies, L-Phe-MEPN interaction is greater than L-Val-MEPN interaction. The experimental and correlated research data are useful for the development of model combinations of AAs with drug molecules in pharmaceutical and medicinal chemistry.

4.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958879

ABSTRACT

Here, we report the results of our 1H nuclear magnetic resonance study of the dynamics of water molecules confined in zeolites (mordenite and ZSM-5 structures) with hierarchical porosity (micropores in zeolite lamella and mesopores formed by amorphous SiO2 in the inter-lamellar space). 1H nuclear magnetic resonance (NMR) spectra show that water experiences complex behavior within the temperature range from 173 to 298 K. The temperature dependence of 1H spin-lattice relaxation evidences the presence of three processes with different activation energies: freezing (about 30 kJ/mol), fast rotation (about 10 kJ/mol), and translational motion of water molecules (23.6 and 26.0 kJ/mol for pillared mordenite and ZSM-5, respectively). For translational motion, the activation energy is markedly lower than for water in mesoporous silica or zeolites with similar mesopore size but with disordered secondary porosity. This indicates that the process of water diffusion in zeolites with hierarchical porosity is governed not only by the presence of mesopores, but also by the mutual arrangement of meso- and micropores. The translational motion of water molecules is determined mainly by zeolite micropores.


Subject(s)
Zeolites , Zeolites/chemistry , Silicon Dioxide/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy/methods
5.
BMC Plant Biol ; 23(1): 365, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37479985

ABSTRACT

BACKGROUND: The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied. RESULTS: We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways. CONCLUSIONS: The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit , Multiomics , Transcriptome , Metabolic Networks and Pathways , Gene Expression Regulation, Plant
6.
Article in English | MEDLINE | ID: mdl-37336389

ABSTRACT

ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either "carboxyl end-first" substrate binding (5S-LOX) or "tail-first" (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.


Subject(s)
Arachidonic Acids , Skin , Skin/metabolism , Lipoxygenase/metabolism , Linoleic Acid/chemistry , Linoleic Acids/metabolism , Fatty Acids , Arachidonic Acid
7.
J Magn Reson ; 353: 107496, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37320959

ABSTRACT

We present an apparatus that applies Ramsey's method of separated oscillatory fields to proton spins in water molecules. The setup consists of a water circuit, a spin polarizer, a magnetically shielded interaction region with various radio frequency elements, and a nuclear magnetic resonance system to measure the spin polarization. We show that this apparatus can be used for Rabi resonance measurements and to investigate magnetic and pseudomagnetic field effects in Ramsey-type precision measurements with a sensitivity below 100 pT.

8.
Pharm Res ; 40(8): 1989-1998, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37127780

ABSTRACT

PURPOSE: To evaluate wNMR, an emerging noninvasive analytical technology, for characterizing aluminum-adjuvanted vaccine formulations. METHODS: wNMR stands for water proton nuclear magnetic resonance. In this work, wNMR and optical techniques (laser diffraction and laser scattering) were used to characterize vaccine formulations containing different antigen loads adsorbed onto AlPO4 adjuvant microparticles, including the fully dispersed state and the sedimentation process. All wNMR measurements were done noninvasively on sealed vials containing the adsorbed vaccine suspensions, while the optical techniques require transferring the adsorbed vaccine suspensions out of the original vial into specialized cuvette/tube for analysis. For analyzing fully dispersed suspensions, optical techniques also require sample dilution. RESULTS: wNMR outperformed laser diffraction in differentiating high- and low-dose formulations of the same vaccine, while wNMR and laser scattering achieved comparable results on vaccine sedimentation kinetics and the compactness of fully settled vaccines. CONCLUSION: wNMR could be used to analyze aluminum-adjuvanted formulations and to differentiate between formulations containing different antigen loads adsorbed onto aluminum adjuvant microparticles. The results demonstrate the capability of wNMR to characterize antigen-adjuvant complexes and to noninvasively inspect finished vaccine products.


Subject(s)
Protons , Vaccines , Aluminum , Water/chemistry , Suspensions , Adjuvants, Immunologic/chemistry , Antigens/chemistry , Magnetic Resonance Spectroscopy
9.
MethodsX ; 10: 102132, 2023.
Article in English | MEDLINE | ID: mdl-36970017

ABSTRACT

We present a method for analysing the lipophilic fraction extracted from ground coffee beans using 60 MHz proton (1H) NMR spectroscopy. In addition to the triglycerides from coffee oil, spectral features are seen from a range of secondary metabolites, such as various diterpenes. We demonstrate quantitation of a peak attributed to one such compound, 16-O-methylcafestol (16-OMC), which is of interest as a coffee species marker. It is present in low concentrations (<<50 mg/kg) in Coffea arabica L. ('Arabica') beans, but in orders of magnitude greater concentrations in other coffees, in particular the other commercially grown species C. canephora Pierre ex A. Froehner (commonly known as 'robusta'). A series of coffee extracts spiked with 16-OMC analytical standard are used to establish a calibration, and to estimate 16-OMC concentrations in a range of different coffees (Arabicas and blends with robustas). To validate the method, values obtained are compared with an analogous quantitation method that uses high field (600 MHz) NMR spectroscopy. •Quantitation of 16-O-methylcafestol in ground roast coffee extracts using benchtop (60 MHz) NMR spectroscopy•Validated by comparison with quantitative high field (600 Mz) NMR spectroscopy•Detection limit is sufficient for discovering adulteration of Arabica coffee with non-Arabica species.

10.
Solid State Nucl Magn Reson ; 123: 101848, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584544

ABSTRACT

Hydrogen bonding plays an important role in the structure and function of a wide range of materials. Solid-state 1H nuclear magnetic resonance (NMR) spectroscopy provides a very sensitive tool to investigate the local structure of hydrogen atoms involved in hydrogen bonding. While there is extensive 1H solid-state NMR data on O-H - - O hydrogen bonding in solid carboxylic acids, there has been no systematic 1H solid-state NMR studies of hydroxyl groups in carbohydrates (and hydroxyl groups in general). With a view to studying the hydrogen bonding in more complex materials such as cellulose polymorphs, we carried out a detailed solid-state 1H NMR investigation of the model compounds α-d-glucose and α-d-glucose monohydrate. Through a combination of fast magic-angle spinning (MAS), combined rotation and multiple pulse spectroscopy (CRAMPS), and two-dimensional (2D) correlation experiments carried out at ultrahigh magnetic fields, it was possible to assign all of the aliphatic (CH), hydroxyl (OH), and water (H2O) 1H chemical shifts in both forms of α-d-glucose. Plane-wave DFT calculations were employed to improve the hydrogen atom positions for α-d-glucose monohydrate and to calculate 1H chemical shifts, providing additional support for the experimentally determined peak assignments. Finally, the relationship between the hydroxyl 1H chemical shifts and their hydrogen bonding geometry was investigated and compared to the well-established relationship for carboxylic acid protons.

11.
Lipids Health Dis ; 21(1): 66, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918691

ABSTRACT

BACKGROUND: The role of lipid metabolism in obesity and cancer manifestations cannot be underestimated, but whether alterations in lipid metabolism can manipulate the vasculature to promote obesity among breast cancer (BC) survivors is yet to be clearly understood. This study quantified plasma lipid and particle sizes using high-throughput proton (1H) nuclear magnetic resonance (NMR) and tested their associations with obesity among breast cancer (BC) survivors. METHODS: A total of 348 (225 premenopausal and 123 postmenopausal) BC survivors enrolled from five hospitals in Korea were included. We assessed thirty-four plasma lipid biomarkers using 1H NMR, and obesity status was defined as a body mass index (BMI) of 25 kg/m2 or greater. Generalized linear and logistic regression models were applied to estimate the least-square means of BMI (kg/m2) and odds ratio (OR)s of obesity, respectively, and the corresponding 95% confidence interval (CI)s across plasma lipid levels. RESULTS: Mean (SD) values of BMI was 23.3 (3.2) kg/m2 and 90 (25.9%) had BMI of ≥ 25 kg/m2. BMI levels increased with increasing total triglycerides (TG), TG in lipoproteins and very-low-density lipoprotein (VLDL) subfractions. However, BMI levels decreased with increasing tertiles of high-density lipoprotein (HDL)-cholesterol (C) and HDL particle size (HDL-p). Similar associations were observed in the logistic regression models. The increasing and decreasing BMI trends with TG and HDL profiles respectively were predominantly limited to premenopausal BC survivors. CONCLUSIONS: Increasing levels of plasma total TG and TG in lipoproteins were associated with increasing levels of BMI among premenopausal BC survivors. High HDL-C levels and large HDL-p were inversely associated with obesity among premenopausal BC survivors. Due to the cross-sectional design of this study, longitudinal studies are necessary to examine the association between obesity and lipid profile among BC survivors.


Subject(s)
Breast Neoplasms , Cancer Survivors , Body Mass Index , Breast Neoplasms/pathology , Cholesterol, HDL , Cross-Sectional Studies , Female , Humans , Lipoproteins , Lipoproteins, LDL , Obesity/complications , Triglycerides
12.
Metabolites ; 12(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35629905

ABSTRACT

We used nuclear magnetic spectroscopy (NMR) to evaluate the metabolomics of heparinized whole blood drawn from six African savanna elephants (Loxodonta africana) maintained on a well characterized diet. Whole blood samples obtained under behavioral restraint, then quickly frozen in liquid nitrogen, were stored at -80 °C until analysis. Frozen samples were thawed under controlled conditions and extracted with methanol and chloroform to separate the polar and non-polar metabolites. We identified 18 polar metabolites and 14 non-polar lipids using one-dimensional (1D) and two-dimensional (2D) NMR spectra. Despite unexpected rouleaux formation in the thawed frozen samples, spectra were consistent among animals and did not vary dramatically with age or the sex of the animal.

13.
Chem Pharm Bull (Tokyo) ; 70(3): 226-229, 2022.
Article in English | MEDLINE | ID: mdl-35228386

ABSTRACT

Quantitative proton NMR (qHNMR) methodology was employed for the stoichiometric (free base and the corresponding counterion) assessment of a ticagrelor process impurity, also referred to in the United States Pharmacopeia (USP), Pharmacopeial Forum as Ticagrelor Related Compound A (RC A), [(1R,2S)-2-(3,4-difluorophenyl)cyclopropan-1-amine (R)-mandelate], also called as Tica amine mandelate, a critical impurity that, when present during manufacturing, has a limit of not more than 0.0008%. The Tica amine is also a listed impurity E in the Ticagrelor monograph, in European Pharmacopeia. Because there was no existing NMR spectroscopic method in the literature specific to quantify the counterion (mandelic acid) in Ticagrelor RC A, this study aimed to fill the gap. Accurate stoichiometric measurement of this impurity serves to enhance product quality in the manufacturing of the ticagrelor active pharmaceutical ingredient (API). Using ethylene carbonate as an internal standard (IS), the qHNMR analysis on Ticagrelor impurity, revealed many key characteristics of the test mixture composition, including (free base and counterion). The results demonstrate that qHNMR has great potential for addressing several key quality attributes associated with chemical analyses such as detection, identification, quantification, and purity determination, as well as deriving molecular stoichiometry, all from the single proton spectrum.


Subject(s)
Magnetic Resonance Imaging , Pharmaceutical Preparations , Drug Contamination , Humans , Magnetic Resonance Spectroscopy/methods , Reference Standards , Ticagrelor
14.
J Lipid Res ; 63(1): 100159, 2022 01.
Article in English | MEDLINE | ID: mdl-34863863

ABSTRACT

In light of the importance of epoxyeicosatrienoic acids (EETs) in mammalian pathophysiology, a nonenzymatic route that might form these monoepoxides in cells is of significant interest. In the late 1970s, a simple system of arranging linoleic acid molecules on a monolayer on silica was devised and shown to yield monoepoxides as the main autoxidation products. Here, we investigated this system with arachidonic acid and characterized the primary products. By the early stages of autoxidation (∼10% conversion of arachidonic acid), the major products detected by LC-MS and HPLC-UV were the 14,15-, 11,12-, and 8,9-EETs, with the 5,6-EET mainly represented as the 5-δ-lactone-6-hydroxyeicosatrienoate as established by 1H-NMR. The EETs were mainly the cis epoxides as expected, with minor trans configuration EETs among the products. 1H-NMR analysis in four deuterated solvents helped clarify the epoxide configurations. EET formation in monolayers involves intermolecular reaction with a fatty acid peroxyl radical, producing the EET and leaving an incipient and more reactive alkoxyl radical, which in turn gives rise to epoxy-hydro(pero)xides and other polar products. The monolayer alignment of fatty acid molecules resembles the arrangements of fatty acids in cell membranes and, under conditions of lipid peroxidation, this intermolecular mechanism might contribute to EET formation in biological membranes.


Subject(s)
Arachidonic Acid
15.
J Diabetes Sci Technol ; 16(6): 1410-1418, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34111968

ABSTRACT

BACKGROUND: There is a clear need to transition from batch-level to vial/syringe/pen-level quality control of biologic drugs, such as insulin. This could be achieved only by noninvasive and quantitative inspection technologies that maintain the integrity of the drug product. METHODS: Four insulin products for patient self-injection presented as prefilled pens have been noninvasively and quantitatively inspected using the water proton NMR technology. The inspection output is the water proton relaxation rate R2(1H2O), a continuous numerical variable rather than binary pass/fail. RESULTS: Ten pens of each product were inspected. R2(1H2O) displays insignificant variation among the 10 pens of each product, suggesting good insulin content uniformity in the inspected pens. It is also shown that transferring the insulin solution out of and then back into the insulin pen caused significant change in R2(1H2O), presumably due to exposure to O2 in air. CONCLUSIONS: Water proton NMR can noninvasively and quantitatively inspect insulin pens. wNMR can confirm product content uniformity, but not absolute content. Its sensitivity to sample transferring provides a way to detect drug product tampering. This opens the possibility of inspecting every pen/vial/syringe by manufacturers and end-users.


Subject(s)
Protons , Water , Humans , Insulin , Syringes , Magnetic Resonance Spectroscopy , Hypoglycemic Agents
16.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641487

ABSTRACT

The photocatalytic activity of layered perovskite-like oxides in water splitting reaction is dependent on the hydration level and species located in the interlayer slab: simple or complex cations as well as hydrogen-bonded or non-hydrogen-bonded H2O. To study proton localization and dynamics in the HCa2Nb3O10·yH2O photocatalyst with different hydration levels (hydrated-α-form, dehydrated-γ-form, and intermediate-ß-form), complementary Nuclear Magnetic Resonance (NMR) techniques were applied. 1H Magic Angle Spinning NMR evidences the presence of different proton containing species in the interlayer slab depending on the hydration level. For α-form, HCa2Nb3O10·1.6H2O, 1H MAS NMR spectra reveal H3O+. Its molecular motion parameters were determined from 1H spin-lattice relaxation time in the rotating frame (T1ρ) using the Kohlrausch-Williams-Watts (KWW) correlation function with stretching exponent ß = 0.28: Ea=0.2102 eV, τ0=9.01 × 10-12 s. For the ß-form, HCa2Nb3O10·0.8H2O, the only 1H NMR line is the result of an exchange between lattice and non-hydrogen-bonded water protons. T1ρ(1/T) indicates the presence of two characteristic points (224 and 176 K), at which proton dynamics change. The γ-form, HCa2Nb3O10·0.1H2O, contains bulk water and interlayer H+ in regular sites. 1H NMR spectra suggest two inequivalent cation positions. The parameters of the proton motion, found within the KWW model, are as follows: Ea=0.2178 eV, τ0=8.29 × 10-10 s.

17.
Polymers (Basel) ; 13(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34372093

ABSTRACT

Jatropha oil-based polyol (JOL) was prepared from crude Jatropha oil via an epoxidation and hydroxylation reaction. During the isocyanation step, two different types of diisocyanates; 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI), were introduced to produce Jatropha oil-based polyurethane acrylates (JPUA). The products were named JPUA-TDI and JPUA-IPDI, respectively. The success of the stepwise reactions of the resins was confirmed using 1H nuclear magnetic resonance (NMR) spectroscopy to support the Fourier-transform infrared (FTIR) spectroscopy analysis that was reported in the previous study. For JPUA-TDI, the presence of a signal at 7.94 ppm evidenced the possible side reactions between urethane linkages with secondary amine that resulted in an aryl-urea group (Ar-NH-COO-). Meanwhile, the peak of 2.89 ppm was assigned to the α-position of methylene to the carbamate (-CH2NHCOO) group in the JPUA-IPDI. From the rheological study, JO and JPUA-IPDI in pure form were classified as Newtonian fluids, while JPUA-TDI showed non-Newtonian behaviour with pseudoplastic or shear thinning behaviour at room temperature. At elevated temperatures, the JO, JPUA-IPDI mixture and JPUA-TDI mixture exhibited reductions in viscosity and shear stress as the shear rate increased. The JO and JPUA-IPDI mixture maintained Newtonian fluid behaviour at all temperature ranges. Meanwhile, the JPUA-TDI mixture showed shear thickening at 25 °C and shear thinning at 40 °C, 60 °C and 80 °C. The master curve graph based on the shear rate for the JO, JPUA-TDI mixture and JPUA-IPDI mixture at 25 °C, 40 °C, 60 °C and 80 °C was developed as a fluid behaviour reference for future storage and processing conditions during the encapsulation process. The encapsulation process can be conducted to fabricate a self-healing coating based on a microcapsule triggered either by air or ultra-violet (UV) radiation.

18.
J Magn Reson ; 327: 106990, 2021 06.
Article in English | MEDLINE | ID: mdl-33932912

ABSTRACT

We describe a modified NMR probe for the in situ irradiation studies of photochemical reactions in solution-state NMR. To build up this setup, we designed an irradiation insert that brings eight light-emitting diodes (LEDs) into the NMR probe in the immediate proximity of the sample. The inserts with LEDs of different wavelengths are easily exchangeable within minutes. A tunable power supply allows to adjust the light intensity to optimize the irradiation conditions.

19.
Talanta ; 231: 122355, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33965022

ABSTRACT

Synthetic cathinones are a class of new psychoactive substances (NPS), an emerging group of analogues to traditional illicit drugs which are functionalized to circumvent legal regulations. The analytical investigation of NPS by traditional methods, such as gas chromatography-mass spectrometry (GC-MS), is challenging because newly emerging NPS may not yet appear in spectral libraries and because of the inability to determine certain positional isomers. Low-field or "benchtop" proton nuclear magnetic resonance spectroscopy (NMR) is an alternative that provides significant qualitative information but is particularly susceptible to matrix interferences. To this end, the development of a Sequential Injection Analysis (SIA) method which uses solid-phase extraction (SPE) to remove interfering matrix components prior to NMR determination is described. Factors including the type of SPE sorbent, column dimensions, and sample loading and elution conditions were examined. Several cathinone simulants (primary, secondary, and tertiary amines), "DEA exempt" cathinone standards, as well as authentic case samples were studied. The selectivity of the SIA-NMR-UV method was investigated against a broad range of "cutting agents" and was found to successfully remove all compounds tested with the exception of other basic drugs (e.g., acetaminophen). The limit of detection and reproducibility of the method were optimized using a Plackett-Burman screening design and Sequential Simplex optimization. Using a UV detector for dual (in series) quantification, the multivariate-optimized method produced a method limit of detection (3σ) for the cathinone simulant Phenylpropanolamine (PPA) of 23 µmol L-1, and a calibration model, in terms of UV peak area, of Area = 0.19 [PPA, mmol L-1] - 0.04. The optimized method generated ~2 mL of waste per day, and had a footprint of ~1 m2 Finally, the multivariate-optimized SIA-NMR-UV method was successfully applied to several more case samples and the cathinones were definitively identified.

20.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805147

ABSTRACT

The liquid state NMR chemical shift of protons is a parameter frequently used to characterize host-guest complexes. Its theoretical counterpart, that is, the 1H NMR chemical shielding affected by the solvent (1H CS), may provide important insights into spatial arrangements of supramolecular systems, and it can also be reliably obtained for challenging cases of an aggregation of aromatic and antiaromatic molecules in solution. This computational analysis is performed for the complex of coronene and an antiaromatic model compound in acetonitrile by employing the GIAO-B3LYP-PCM approach combined with a saturated basis set. Predicted 1H CS values are used to generate volumetric data, whose properties are thoroughly investigated. The 1H CS isosurface, corresponding to a value of the proton chemical shift taken from a previous experimental study, is described. The presence of the 1H CS isosurface should be taken into account in deriving structural information about supramolecular hosts and their encapsulation of small molecules.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Polycyclic Compounds/chemistry , Solvents/chemistry , Acetonitriles/chemistry , Carbon Isotopes , Iron/chemistry , Macromolecular Substances , Nickel/chemistry , Normal Distribution , Proton Magnetic Resonance Spectroscopy , Protons , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL