Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.521
Filter
1.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240007, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979581

ABSTRACT

This study compiles the information for the development of analytical methods for estimation of the Tizanidine HCl that will be helpful for further research work on this drug and its impurity. The present Literature survey provides information about the Analytical methods like UV,TLC,RP-HPLC,HPTLC,UHPLC and other methods have been reported for Tizanidine HCl drug individually and along with other drugs. The analysis of published data revealed that, there was only UV spectroscopic method (calibration curve metod) is reported for estimation of Tizanidine HCl fixed dose combination. Estimation of Tizanidine HCl by superlative RP-HPLC method i.e. Mobile phase- Acetonitrile: phosphate buffer (pH: 7.5) (50:50%v/v), Column C18 (250mm*4mm*5µm), Flow rate- 1.0 ml/min, Wavelength: 318 nm. Optimized HPLC condition was validated by assessing validation parameters and it meet the acceptance criteria set by ICH. It was showed method was linear and precise. The validated RP-HPLC-PDA method can be used for routine analysis of Tizanidine HCl in tablet.


Subject(s)
Clonidine , Chromatography, High Pressure Liquid/methods , Clonidine/analogs & derivatives , Clonidine/analysis , Chromatography, Reverse-Phase/methods
2.
Article in English | MEDLINE | ID: mdl-39005010

ABSTRACT

BACKGROUND AND AIM: Primary liver cancer, particularly hepatocellular carcinoma (HCC), represents a substantial global health challenge. Although immune checkpoint inhibitors are effective in HCC treatment, several patients still experience disease progression. Interleukin-1 (IL-1) regulates immunity and inflammation. We investigate the role of IL-1 in HCC development and progression and determine the potential therapeutic impact of gemcitabine in treating HCC. METHODS: Hydrodynamics-based transfection, employing the sleeping beauty transposase system, delivered surrogate tumor antigens, NRAS (NRAS proto-oncogene, GTPase), ShP53, and SB100 to C57BL/6 mice. A basic HCC mouse model was established. Pathogen-free animals were tested for serum and hepatotoxicity. The HCC prognosis was monitored using alanine aminotransferase and aspartate aminotransferase levels. Liver histology immunohistochemistry and mouse splenocyte/intra-hepatic immune cell flow cytometry were conducted. IL-1ß levels in human and mouse serum were assessed. RESULTS: Interleukin-1ß levels were elevated in patients with HCC compared with those in non-HCC controls. Hepatic IL-1ß levels were higher in HCC mouse models than those in non-HCC mice, suggesting localized hepatic inflammation. IL-1 receptor type 1 (IL-1R1) knockout (IL-1R1-/-) mice exhibited less severe HCC progression than that in wild-type mice, despite the high intra-hepatic IL-1ß concentration. IL-1R1-/- mice exhibited increased hepatic levels of myeloid-derived suppressor cells and regulatory T cells, which may exacerbate HCC. Gemcitabine significantly reduced the HCC tumor burden, improved liver conditions, and increased survival rates in HCC mouse models. Gemcitabine reduced the hepatic levels of myeloid-derived suppressor cells and regulatory T cells, potentially alleviating immune suppression in the liver. CONCLUSIONS: Targeting IL-1 or combining gemcitabine with immunotherapy is a promising approach for treating advanced-stage HCC.

3.
Biomed Pharmacother ; 177: 117004, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955084

ABSTRACT

ß2 adrenergic receptor (ß2AR) is a G-protein-coupled receptor involved in cardiac protection. In chronic heart failure (CHF), persistent sympathetic nervous system activation occurs, resulting in prolonged ß2AR activation and subsequent receptor desensitization and downregulation. Notoginsenoside R1 (NGR1) has the functions of enhancing myocardial energy metabolism and mitigating myocardial fibrosis. The mechanisms of NGR1 against ischemic heart failure are unclear. A left anterior descending (LAD) artery ligation procedure was performed on C57BL/6 J mice for four weeks. From the 4th week onwards, they were treated with various doses (3, 10, 30 mg/kg/day) of NGR1. Subsequently, the impacts of NGR1 on ischemic heart failure were evaluated by assessing cardiac function, morphological changes in cardiac tissue, and the expression of atrial natriuretic peptide (ANP) and beta-myosin heavy chain (ß-MHC). H9c2 cells were protected by NGR1 when exposed to OGD/R conditions. H9c2 cells were likewise protected from OGD/R damage by NGR1. Furthermore, NGR1 increased ß2AR levels and decreased ß2AR ubiquitination. Mechanistic studies revealed that NGR1 enhanced MDM2 protein stability and increased the expression of MDM2 and ß-arrestin2 while inhibiting their interaction. Additionally, under conditions produced by OGD/R, the protective benefits of NGR1 on H9c2 cells were attenuated upon administration of the MDM2 inhibitor SP141. According to these findings, NGR1 impedes the interplay between ß-arrestin2 and MDM2, thereby preventing the ubiquitination and degradation of ß2AR to improve CHF.

4.
Curr Neuropharmacol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39041263

ABSTRACT

Ghrelin is a gut peptide hormone associated with feeding behavior and energy homeostasis. Acylated ghrelin binds to the growth hormone secretagogue receptor 1a subtype (GHS-R1a) in the hippocampus, leading to GH release from the anterior pituitary. However, in recent years, ghrelin and its receptor have also been implicated in other processes, including the regulation of cardiomyocyte function, muscle trophism, and bone metabolism. Moreover, GHS-R1a is distributed throughout the brain and is expressed in brain areas that regulate the stress response and emotional behavior. Consistently, a growing body of evidence supports the role of ghrelin in regulating stress response and mood. Stress has consistently been shown to increase ghrelin levels, and despite some inconsistencies, both human and rodent studies suggested antidepressant effects of ghrelin. Nevertheless, the precise mechanism by which ghrelin influences stress response and mood remains largely unknown. Intriguingly, ghrelin and GHS-R1a were consistently reported to exert anti-inflammatory, antioxidant, and neurotrophic effects both in vivo and in vitro, although this has never been directly assessed in relation to psychopathology. In the present review we will discuss available literature linking ghrelin with the stress response and depressive-like behavior in animal models as well as evidence describing the interplay between ghrelin and neuroinflammation/oxidative stress. Although further studies are required to understand the mechanisms involved in the action of ghrelin on mood, we hypothesize that the antiinflammatory and anti-oxidative properties of ghrelin may give a key contribution.

5.
Cureus ; 16(6): e62983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39044864

ABSTRACT

Primary immunodeficiencies are disorders of the immune system often caused by mutations of genes required for lymphocyte development. Phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) gene mutations are associated with SHORT syndrome, a rare multisystem disease. The name stands for Short stature, Hyperextensibility, Ocular depression, Rieger anomaly and Teething delay. Our case describes a child who presented with agammaglobulinemia with phenotypical features of SHORT syndrome. Upon further investigation, he was found to have a rare variant of the PIK3R1 gene mutation. This new mutation combines two distinct diseases with the same gene defect, which otherwise has been reported as two separate entities. The objective of this report is to identify a new gene mutation associated with SHORT syndrome along with agammaglobulinemia and to highlight the importance of recognizing the features of SHORT syndrome. We describe a nine-year-old male who presented with developmental delay and recurrent infections at the age of 12 months. Immunological evaluation revealed agammaglobulinemia and he has been scheduled for regular intravenous immunoglobulin replacement therapy. In view of characteristic syndromic physical features, speech and teething delay, we investigated further for the underlying genetic reason for agammaglobulinemia. The molecular analysis demonstrated a rare homozygous variant, c.244dup, in the PIK3R1 gene. This case reveals the association of the PIK3R1 gene mutation with agammaglobulinemia and SHORT syndrome. It further demonstrates the discovery of a new pathological variant of the gene. A detailed history and examination along with an immunological and genetic workup should be carried out for children with certain distinct phenotypical features. SHORT syndrome has specific characteristics that call for awareness and early recognition for prompt diagnosis and intervention. Emphasis is placed on genetic counseling as the disease is inherited in an autosomal recessive pattern, as demonstrated by molecular genetic studies.

6.
FASEB J ; 38(14): e23825, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031532

ABSTRACT

Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.


Subject(s)
Calcium , Calpain , Mice, Knockout , Muscle Proteins , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Calpain/metabolism , Mice , Calcium/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Male , Mice, Inbred C57BL , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Calcium Signaling
7.
Biomed Pharmacother ; 177: 116929, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889644

ABSTRACT

Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1ß, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes.

8.
Phytother Res ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886264

ABSTRACT

Atherosclerosis represents the major cause of mortality worldwide and triggers higher risk of acute cardiovascular events. Pericytes-endothelial cells (ECs) communication is orchestrated by ligand-receptor interaction generating a microenvironment which results in intraplaque neovascularization, that is closely associated with atherosclerotic plaque instability. Notoginsenoside R1 (R1) exhibits anti-atherosclerotic bioactivity, but its effect on angiogenesis in atherosclerotic plaque remains elusive. The aim of our study is to explore the therapeutic effect of R1 on vulnerable plaque and investigate its potential mechanism against intraplaque neovascularization. The impacts of R1 on plaque stability and intraplaque neovascularization were assessed in ApoE-/- mice induced by high-fat diet. Pericytes-ECs direct or non-direct contact co-cultured with VEGF-A stimulation were used as the in vitro angiogenesis models. Overexpressing Ang1 in pericytes was performed to investigate the underlying mechanism. In vivo experiments, R1 treatment reversed atherosclerotic plaque vulnerability and decreased the presence of neovessels in ApoE-/- mice. Additionally, R1 reduced the expression of Ang1 in pericytes. In vitro experiments demonstrated that R1 suppressed pro-angiogenic behavior of ECs induced by pericytes cultured with VEGF-A. Mechanistic studies revealed that the anti-angiogenic effect of R1 was dependent on the inhibition of Ang1 and Tie2 expression, as the effects were partially reversed after Ang1 overexpressing in pericytes. Our study demonstrated that R1 treatment inhibited intraplaque neovascularization by governing pericyte-EC association via suppressing Ang1-Tie2/PI3K-AKT paracrine signaling pathway. R1 represents a novel therapeutic strategy for atherosclerotic vulnerable plaques in clinical application.

9.
Metabolites ; 14(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38921437

ABSTRACT

Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.

10.
Acta Neuropathol Commun ; 12(1): 104, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926880

ABSTRACT

A novel histomolecular tumor of the central nervous system (CNS), the "diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters (DGONC)," has recently been identified, based on a distinct DNA methylation profile and has been added to the 2021 World Health Organization Classification of CNS Tumors. This glioneuronal tumor mainly affects the supratentorial area in children and recurrently presents with a monosomy of chromosome 14. Herein, we report the case of a DNA-methylation based diagnosis of DGONC having atypical features, such as pseudo-rosettes and the absence of a chromosome 14 monosomy, thus rendering its diagnosis very challenging. Because of the wide variety of morphologies harbored by DGONC, a large range of differential diagnoses may be hypothesized from benign to malignant. Interestingly, the current case, like one previously reported, exhibited a co-expression of OLIG2, synaptophysin and SOX10, without GFAP immunopositivity. This particular immunophenotype seems to be a good indicator for a DGONC diagnosis. The classification of DGONC amongst glioneuronal or embryonal tumors is still debated. The clinical (a pediatric supratentorial tumor), morphological (from a benign oligodendroglioma-like tumor with microcalcifications and possible neuropil-like islands to a malignant embryonal tumor with a possible spongioblastic pattern), and immunohistochemical (co-expression of OLIG2 and synaptophsyin) profiles resemble CNS, neuroblastoma, FOXR2-activated and may potentially bring them together in a future classification. Further comprehensive studies are needed to conclude the cellular origin of DGONC and its prognosis.


Subject(s)
Brain Neoplasms , Oligodendroglioma , Child , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , DNA Methylation , Oligodendroglioma/pathology , Oligodendroglioma/genetics
11.
PDA J Pharm Sci Technol ; 78(3): 367-383, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942476

ABSTRACT

The Risk Knowledge Infinity (RKI) Cycle Framework was featured as part of the ICH-sanctioned training materials supporting the recent issuance of ICH Q9(R1) Quality Risk Management To support ICH Q9(R1) understanding and adoption, this paper presents a case study on the application of the RKI Cycle, based on an underlying out-of-specification investigation. This case study provides a stepwise walk-through of the cycle to illustrate how key concepts within the ICH Q9(R1) revision can be achieved through better connecting quality risk management and knowledge management with a framework such as the RKI Cycle.


Subject(s)
Risk Management , Risk Management/methods , Humans , Knowledge Management , Quality Control , Drug Industry/methods
12.
J Proteomics ; 303: 105223, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38862068

ABSTRACT

Idiopathic membranous nephropathy (IMN) is an antibody-mediated and kidney-specific autoimmune disease, with the antigen phospholipase A2 receptor 1 (PLA2R1) accounting for approximately 70% of IMN cases. Although a variety of new podocyte target antigens and their autoantibodies have been identified, they are still of limited diagnostic and therapeutic value due to lack of high specificity and sensitivity. N-glycans play vital roles in renal system and their pathobiological relevance has become increasingly recognized in many kidney diseases, but not fully explored in IMN. To find possible glyco-signatures for PLA2R1-related IMN diagnosis, we herein established a comprehensive workflow for total serum N-glycome analysis based on our recently developed mass spectrometry (MS)-based N-glycan purification method, named Ultrafast Glycoprotein Immobilization for Glycan extraction (UltraGIG). A total of 191 N-glycans were identified from IMN patients, representing the largest N-glycome dataset in IMN. Compared to healthy controls, up-regulation of sialylation and core-fucosylation as well as down-regulation of galactosylation were observed in PLA2R1-positive IMN patients, and up-regulation of hyper-galactosylation was specific for PLA2R1-negative IMN patients. A six-glycan marker panel consisting of H4N3S1, H4N3F1, H6N4S2, H6H5F1S2, H6N5 and H6N6F1S1, was proposed to aid in the accurate diagnosis of PLA2R1-related IMN, which provided new insights into IMN biomarker study. SIGNIFICANCE: PLA2R1-related IMN is a kidney-specific autoimmune disease with a high risk of developing end-stage renal disease (ESRD) and even kidney failure. Current biomarkers are still of limited diagnostic and therapeutic value due to lack of high specificity and sensitivity. An in-depth MS analysis of total serum N-glycome of PLA2R1-related IMN patients was conducted for the first time. We generated the largest dataset of serum N-glycome for IMN to date, and proposed a novel six-glycan marker panel that may help the accurate diagnosis of PLA2R1-related IMN.


Subject(s)
Glomerulonephritis, Membranous , Polysaccharides , Receptors, Phospholipase A2 , Humans , Glomerulonephritis, Membranous/blood , Glomerulonephritis, Membranous/diagnosis , Receptors, Phospholipase A2/blood , Polysaccharides/blood , Polysaccharides/analysis , Male , Female , Middle Aged , Biomarkers/blood , Adult , Glycomics/methods
13.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928057

ABSTRACT

Ovarian mature teratomas (OMTs) originate from post-meiotic germ cells. Malignant transformation occurs in approximately 1-2% of OMTs; however, sebaceous carcinoma arising from OMTs is rare. This is the first report of a detailed genomic analysis of sebaceous carcinoma arising from an OMT. A 36-year-old woman underwent evaluation for abdominal tumors and subsequent hysterectomy and salpingo-oophorectomy. Pathologically, a diagnosis of stage IA sebaceous carcinoma arising from an OMT was established. Eight months post-surgery, the patient was alive without recurrence. Immunohistochemically, the tumor was negative for mismatch repair proteins. A nonsense mutation in TP53 (p.R306*) and a deletion in PIK3R1 were identified. Single nucleotide polymorphisms across all chromosomes displayed a high degree of homozygosity, suggestive of uniparental disomy. Herein, the OMT resulting from the endoreduplication of oocytes underwent a malignant transformation to sebaceous carcinoma via TP53 as an early event and PIK3R1 as a late event.


Subject(s)
Ovarian Neoplasms , Teratoma , Tumor Suppressor Protein p53 , Humans , Female , Adult , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/surgery , Teratoma/genetics , Teratoma/pathology , Tumor Suppressor Protein p53/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Adenocarcinoma, Sebaceous/genetics , Adenocarcinoma, Sebaceous/pathology , Polymorphism, Single Nucleotide , Cell Transformation, Neoplastic/genetics
14.
Muscle Nerve ; 70(2): 279-283, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837459

ABSTRACT

INTRODUCTION/AIMS: Paired-pulse stimulation provides clinically useful information regarding sensory inhibition. When supraorbital nerve stimulation is repeated within a short interval, the response to the second stimulation is reduced to varying degrees. This magnitude of change in stimulation response can be monitored by electromyogram (EMG) or by mechanomyogram (MMG) as in this report. MMG has some advantages such as being less time consuming and lacking stimulus artifact. We compared the use of MMG and EMG to validate MMG as an effective method of assessing blink reflex paired-pulse inhibition. METHODS: Eight volunteers participated. Participants received electrical stimulation to the supraorbital nerve of each side. A paired-pulse paradigm was employed, varying the conditioning-test interval between 5 and 800 ms. The R1 component of the induced blink reflex was simultaneously recorded by EMG using a pair of electrodes placed on the lower eyelid and by MMG using an accelerometer placed between the electrodes. RESULTS: The correlation coefficient of the R1 amplitude between MMG and EMG of the grand-averaged waveforms was 0.99. The average participant r value was .91 (range .76-.99). Similar analyses were performed for the amplitude variation of the second response relative to the first response. Results correlated well, yielding r values of .97 and .86 for the grand-averaged waveform and the average for each subject. DISCUSSION: The present results demonstrate that MMG could be an alternative to EMG in assessing paired-pulse inhibition of the electrical blink reflex R1 component.


Subject(s)
Blinking , Electric Stimulation , Electromyography , Humans , Blinking/physiology , Male , Adult , Female , Electric Stimulation/methods , Electromyography/methods , Young Adult , Myography/methods , Neural Inhibition/physiology
15.
Aging (Albany NY) ; 16(12): 10446-10461, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38885076

ABSTRACT

Ferroptosis is a new way of cell death, and stimulating the process of cell ferroptosis is a new strategy to treat breast cancer. NGR1 has good anti-cancer activity and is able to slow the progression of breast cancer. However, NGR1 has not been reported in the field related to ferroptosis. By searching the online database for potential targets of NGR1 and the breast cancer disease database, among 11 intersecting genes we focused on Runt-related transcription factor 2 (RUNX2), which is highly expressed in breast cancer, and KEGG pathway enrichment showed that the intersecting genes were mainly enriched in the AGE (advanced glycosylation end products)-RAGE (receptor of AGEs) signaling pathway. After that, we constructed overexpression and down-regulation breast cancer cell lines of RUNX2 in vitro, and tested whether NGR1 treatment induced ferroptosis in breast cancer cells by regulating RUNX2 to inhibit the AGE-RAGE signaling pathway through phenotyping experiments of ferroptosis, Western blot experiments, QPCR experiments, and electron microscopy observation. The results showed that NGR1 was able to inhibit the expression level of RUNX2 and suppress the AGE/PAGE signaling pathway in breast cancer cells. NGR1 was also able to promote the accumulation of Fe2+ and oxidative damage in breast cancer cells by regulating RUNX2 and then down-regulating the expression level of GPX4, FIH1 and up-regulating the expression level of ferroptosis-related proteins such as COX2, ACSL4, PTGS2 and NOX1, which eventually led to the ferroptosis of breast cancer cells.


Subject(s)
Breast Neoplasms , Core Binding Factor Alpha 1 Subunit , Ferroptosis , Signal Transduction , Ferroptosis/drug effects , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Signal Transduction/drug effects , Female , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Ginsenosides/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Glycation End Products, Advanced/metabolism , MCF-7 Cells
16.
Drug Des Devel Ther ; 18: 1821-1832, 2024.
Article in English | MEDLINE | ID: mdl-38845851

ABSTRACT

Aim: Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods: Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results: The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1ß levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1ß inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion: Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.


Subject(s)
Atherosclerosis , Cholecalciferol , Diet, High-Fat , Gastrointestinal Microbiome , Ginsenosides , Inflammation , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Rats , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/pathology , Diet, High-Fat/adverse effects , Male , Cholecalciferol/pharmacology , Cholecalciferol/administration & dosage , Inflammation/drug therapy , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism
17.
Front Neurosci ; 18: 1357368, 2024.
Article in English | MEDLINE | ID: mdl-38841093

ABSTRACT

Prepulse inhibition (PPI) is a well-established phenomenon wherein a weak sensory stimulus attenuates the startle reflex triggered by a subsequent strong stimulus. Within the circuit, variations in target responses observed for PPI paradigms represent prepulse-induced excitability changes. However, little is known about the mechanism of PPI. Here, we focused on short-latency PPI of the trigeminal blink reflex R1 signal with an oligosynaptic reflex arc through the principal sensory trigeminal nucleus and the facial nucleus. As the facial nucleus is facilitatory to any input, R1 PPI is the phenomenon in the former nucleus. Considering that GABAergic modulation may be involved in PPI, this study investigated whether the PPI mechanism includes GABA-A equivalent inhibition, which peaks at approximately 30 ms in humans. In 12 healthy volunteers, the reflex was elicited by electrical stimulation of the supraorbital nerve, and recorded at the ipsilateral lower eyelid by accelerometer. Stimulus intensity was 1.5 times the R1 threshold for test stimulus and 0.9 times for the prepulse. The prepulse-test interval (PTI) was 5-150 ms. Results showed significant inhibition at 40-and 80-150-ms PTIs but not at 20-, 30-, 50-, 60-, and 70-ms PTIs, yielding two distinct inhibitions of different time scales. This corresponds well to the early and late components of inhibitory post synaptic potentials by GABA-A and GABA-B receptor activation. Thus, the data support the contribution of inhibitory post synaptic potentials elicited by the prepulse to the observed PPI. As inhibitory function-related diseases may impair the different inhibition components to varying degrees, methods deconvoluting each inhibitory component contribution are of clinical importance.

18.
J Bone Miner Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847469

ABSTRACT

Vitamin D dependent rickets (VDDR) is a group of genetic disorders characterized by early-onset rickets due to deficiency of active vitamin D or a failure to respond to activated vitamin D. VDDR is divided into several subtypes according to the corresponding causative genes. Here we described a new type of autosomal dominant VDDR in a Chinese pedigree. The proband and his mother had severe bone malformations, dentin abnormalities, and lower serum 25 hydroxyvitamin D3 (25 (OH)D3) and phosphate levels. The proband slightly responded to high dose of vitamin D3 instead of daily low dose of vitamin D3. Whole exome sequencing, bioinformatic analysis, PCR and Sanger sequencing identified a nonsense mutation in CYP4A22 (c.900delG). The overexpressed wild type CYP4A22 mainly localized in endoplasmic reticulum and Golgi apparatus, and synthesized 25 (OH)D3 in HepG2 cells. The overexpressed CYP4A22 mutant increased the expression of CYP2R1 and produced little 25 (OH)D3 with vitamin D3 supplementation, which was reduced by CYP2R1 siRNA treatment. We concluded that CYP4A22 functions as a new kind of 25-hydroxylases for vitamin D3. Loss-of-function mutations in CYP4A22 lead to a new type of VDDR type 1 (VDDR1C). CYP2R1 and CYP4A22 may have some genetic compensation responding to nonsense-mediated mRNA decay effect of each other.


A nonsense mutation in CYP4A22 was found in a Chinese pedigree with vitamin D dependent rickets and low serum phosphate. CYP4A22 localizes in endoplasmic reticulum and Golgi apparatus, and processes 25-hydroxylase activity in liver cells. CYP4A22 loss of function reduce the synthesis of 25(OH)D3 and cause genetic compensation of CYP2R1.

19.
Cell Biochem Biophys ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847941

ABSTRACT

Essential thrombocythemia (ET) is a type of myeloproliferative neoplasm that increases the risk of thrombosis. To diagnose this disease, the analysis of mutations in the Janus Kinase 2 (JAK2), thrombopoietin receptor (MPL), or calreticulin (CALR) gene is recommended. Disease poses diagnostic challenges due to overlapping mutations with other neoplasms and the presence of triple-negative cases. This study explores the potential of Raman spectroscopy combined with machine learning for ET diagnosis. We assessed two laser wavelengths (785, 1064 nm) to differentiate between ET patients and healthy controls. The PCR results indicate that approximately 50% of patients in our group have a mutation in the JAK2 gene, while only 5% of patients harbor a mutation in the ASXL1 gene. Additionally, only one patient had a mutation in the IDH1 and one had a mutation in IDH2 gene. Consequently, patients having no mutations were also observed in our group, making diagnosis challenging. Raman spectra at 1064 nm showed lower amide, polysaccharide, and lipid vibrations in ET patients, while 785 nm spectra indicated significant decreases in amide II and C-H lipid vibrations. Principal Component Analysis (PCA) confirmed that both wavelengths could distinguish ET from healthy subjects. Support Vector Machine (SVM) analysis revealed that the 800-1800 cm-1 range provided the highest diagnostic accuracy, with 89% for 785 nm and 72% for 1064 nm. These findings suggest that FT-Raman spectroscopy, paired with multivariate and machine learning analyses, offers a promising method for diagnosing ET with high accuracy by detecting specific molecular changes in serum. Principal Component Analysis (PCA) confirmed that both wavelengths could distinguish ET from healthy subjects. Support Vector Machine (SVM) analysis revealed that the 800-1800 cm-1 range provided the highest diagnostic accuracy, with 89% for 785 nm and 72% for 1064 nm. These findings suggest that FT-Raman spectroscopy, paired with multivariate and machine learning analyses, offers a promising method for diagnosing ET with high accuracy by detecting specific molecular changes in serum.

20.
Plant J ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865101

ABSTRACT

Anthocyanin is an important pigment responsible for plant coloration and beneficial to human health. Kale (Brassica oleracea var. acephala), a primary cool-season flowers and vegetables, is an ideal material to study anthocyanin biosynthesis and regulation mechanisms due to its anthocyanin-rich leaves. However, the underlying molecular mechanism of anthocyanin accumulation in kale remains poorly understood. Previously, we demonstrated that BoDFR1 is a key gene controlling anthocyanin biosynthesis in kale. Here, we discovered a 369-bp InDel variation in the BoDFR1 promoter between the two kale inbred lines with different pink coloration, which resulted in reduced transcriptional activity of the BoDFR1 gene in the light-pink line. With the 369-bp insertion as a bait, an R2R3-MYB repressor BoMYB4b was identified using the yeast one-hybrid screening. Knockdown of the BoMYB4b gene led to increased BoDFR1 expression and anthocyanin accumulation. An E3 ubiquitin ligase, BoMIEL1, was found to mediate the degradation of BoMYB4b, thereby promoting anthocyanin biosynthesis. Furthermore, the expression level of BoMYB4b was significantly reduced by light signals, which was attributed to the direct repression of the light-signaling factor BoMYB1R1 on the BoMYB4b promoter. Our study revealed that a novel regulatory module comprising BoMYB1R1, BoMIEL1, BoMYB4b, and BoDFR1 finely regulates anthocyanin accumulation in kale. The findings aim to establish a scientific foundation for genetic improvement of leaf color traits in kale, meanwhile, providing a reference for plant coloration studies.

SELECTION OF CITATIONS
SEARCH DETAIL