Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.016
Filter
1.
Intern Emerg Med ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095675

ABSTRACT

The raising number of older patients who are diagnosed with breast cancer represents a significant medical and societal challenge. Aromatase inhibitors (AI), which are commonly utilized to treat this condition in these patients have significant adverse events on bone and muscle health. Falling estrogen production leads to an increase in RANKL secretion by osteoblasts with accelerated bone remodeling due to osteoclast activity. Furthermore, estrogen deficiency reduces skeletal muscle strength and mass. The humanized monoclonal antibody, denosumab, neutralizes RANKL, thereby inhibiting osteoclast formation, function and survival and ultimately exerting powerful anti-resorptive effects.. In this study, we report on the efficacy of denosumab in mitigating aromatase inhibitor-induced bone loss (AIBL) and sarcopenia in older women with breast cancer. From January 2022 to January 2023, we enrolled 30 patients (female sex, ≥ 65 years) diagnosed with non-metastatic breast cancer undergoing adjuvant endocrine therapy; patients received, as per clinical practice, primary bone prophylaxis with denosumab (60 mg via subcutaneous injection every 6 months) according to oncologic guidelines. This group was matched with 30 patients with non-metastatic breast cancer, who were treated with biphosphonates (BF) therapy (oral alendronate 70 mg/week). For each patient bone mineral density (BMD) and bone quality in terms of trabecular bone score (TBS) in addition to body composition and Relative Skeletal Muscle Index (RSMI) was assessed by bone densitometry at baseline and after one year of treatment. Significant improvements in TBS at the lumbar spine, RSMI and whole-body composition (arms, legs, and trunk) were observed in the denosumab group compared with the BF group. These findings underscore the role of denosumab as an effective strategy in managing AIBL and osteosarcopenia in older women with breast cancer and undergoing adjuvant endocrine therapy, which is crucial for improving quality of life, preventing functional decline, and optimizing treatment outcomes.

2.
Mol Cell Biochem ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110281

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause destruction of cartilage and bone's extracellular matrix. Bromodomain 4 (BRD4), as a transcriptional and epigenetic regulator, plays a key role in cancer and inflammatory diseases. While, the role of BRD4 in bone destruction in RA has not been extensively reported. Our study aimed to investigate the effect of BRD4 on the bone destruction in RA and, further, its mechanism in the pathogenesis of the disease. In this study, receiving approval from the Ethical Committee of the Affiliated Hospital of Qingdao University, we evaluated synovial tissues from patients with RA and OA for BRD4 expression through advanced techniques such as immunohistochemistry, quantitative real-time PCR (qRT-PCR), and Western blotting. We employed a collagen-induced arthritis (CIA) mouse model to assess the therapeutic efficacy of the BRD4 inhibitor JQ1 on disease progression and bone destruction, supported by detailed clinical scoring and histological examinations. Further, in vitro osteoclastogenesis assays using RAW264.7 macrophages, facilitated by TRAP staining and resorption pit assays, provided insights into the mechanistic effects of JQ1 on osteoclast function. Statistical analysis was rigorously conducted using SPSS, applying Kruskal-Wallis, one-way ANOVA, and Student's t-tests to validate the data. In our study, we found that BRD4 expression significantly increased in the synovial tissues of RA patients and the ankle joints of CIA mice, with JQ1, a BRD4 inhibitor, effectively reducing inflammation, arthritis severity (p < 0.05), and bone erosion. Treatment with JQ1 not only improved bone mass and structural integrity in CIA mice but also downregulated osteoclast-related gene expression and the RANKL/RANK signaling pathway, indicating a suppression of osteolysis. Furthermore, in vitro assays demonstrated that JQ1 markedly inhibited osteoclast differentiation and function, underscoring the pivotal role of BRD4 in osteoclastogenesis and its potential as a target for therapeutic intervention in RA-induced bone destruction. Our study concludes that targeting BRD4 with the inhibitor JQ1 significantly mitigates inflammation and bone destruction in rheumatoid arthritis, suggesting that inhibition of BRD4 may be a potential therapeutic strategy for the treatment of bone destruction in RA.

3.
Front Pharmacol ; 15: 1423884, 2024.
Article in English | MEDLINE | ID: mdl-39108758

ABSTRACT

Background: Fu-zi decoction (FZD) has a long history of application for treating Rheumatoid arthritis (RA) as a classic formulation. However, its underlying mechanisms have not been fully elucidated. This study aimed to decipher the potential mechanism of FZD in treating RA, with a specific focus on receptor activator of nuclear factor κB/receptor activator of nuclear factor κB ligand (RANK/RANKL) signaling pathway. Methods: The impact of FZD on RA was investigated in collagen-induced arthritis rats (CIA), and the underlying mechanism was investigated in an osteoclast differentiation cell model. In vivo, the antiarthritic effect of FZD at various doses (2.3, 4.6, 9.2 g/kg/day) was evaluated by arthritis index score, paw volume, toe thickness and histopathological examination of inflamed joints. Additionally, the ankle joint tissues were determined with micro-CT and safranin O fast green staining to evaluate synovial hyperplasia and articular cartilage damage. In vitro, osteoclast differentiation and maturation were evaluated by TRAP staining in RANKL-induced bone marrow mononuclear cells. The levels of pro- and anti-inflammatory cytokines as well as RANKL and OPG were evaluated by ELISA kits. In addition, Western blotting was used to investigate the effect of FZD on RANK/RANKL pathway activation both in vivo and in vitro. Results: FZD significantly diminished the arthritis index score, paw volume, toe thickness and weigh loss in CIA rats, alleviated the pathological joint alterations. Consistent with in vivo results, FZD markedly inhibited RANKL-induced osteoclast differentiation by decreasing osteoclast numbers in a dose-dependent manner. Moreover, FZD decreased the levels of pro-inflammatory cytokines IL-6, IL-1ß and TNF-α, while increasing anti-inflammatory cytokine IL-10 level both in serum and culture supernatants. Treatment with FZD significantly reduced serum RANKL levels, increased OPG levels, and decreased the RANKL/OPG ratio. In both in vivo and in vitro settings, FZD downregulated the protein expressions of RANK, RANKL, and c-Fos, while elevating OPG levels, further decreasing the RANKL/OPG ratio. Conclusion: In conclusion, FZD exerts a therapeutic effect in CIA rats by inhibiting RANK/RANKL-mediated osteoclast differentiation, which suggested that FZD is a promising treatment for RA.

4.
Prog Orthod ; 25(1): 29, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129034

ABSTRACT

BACKGROUND: Orthodontic tooth movement (OTM) is a dynamic equilibrium of bone remodeling, involving the osteogenesis of new bone and the osteoclastogenesis of old bone, which is mediated by mechanical force. Periodontal ligament stem cells (PDLCSs) in the periodontal ligament (PDL) space can transmit mechanical signals and regulate osteoclastogenesis during OTM. KAT6A is a histone acetyltransferase that plays a part in the differentiation of stem cells. However, whether KAT6A is involved in the regulation of osteoclastogenesis by PDLSCs remains unclear. RESULTS: In this study, we used the force-induced OTM model and observed that KAT6A was increased on the compression side of PDL during OTM, and also increased in PDLSCs under compression force in vitro. Repression of KAT6A by WM1119, a KAT6A inhibitor, markedly decreased the distance of OTM. Knockdown of KAT6A in PDLSCs decreased the RANKL/OPG ratio and osteoclastogenesis of THP-1. Mechanistically, KAT6A promoted osteoclastogenesis by binding and acetylating YAP, simultaneously regulating the YAP/TEAD axis and increasing the RANKL/OPG ratio in PDLSCs. TED-347, a YAP-TEAD4 interaction inhibitor, partly attenuated the elevation of the RANKL/OPG ratio induced by mechanical force. CONCLUSION: Our study showed that the PDLSCs modulated osteoclastogenesis and increased the RANKL/OPG ratio under mechanical force through the KAT6A/YAP/TEAD4 pathway. KAT6A might be a novel target to accelerate OTM.


Subject(s)
Histone Acetyltransferases , Osteogenesis , Osteoprotegerin , Periodontal Ligament , RANK Ligand , Tooth Movement Techniques , Transcription Factors , Tooth Movement Techniques/methods , RANK Ligand/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Transcription Factors/metabolism , Osteogenesis/physiology , Humans , Histone Acetyltransferases/metabolism , Osteoprotegerin/metabolism , DNA-Binding Proteins/metabolism , Osteoclasts/metabolism , Stem Cells , Signal Transduction/physiology , Animals
5.
medRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39108527

ABSTRACT

Osteoprotegerin (OPG) is a soluble decoy receptor for receptor activator of NF-ƙB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL), and is increasingly recognised as a marker of poor prognosis in a number of diseases. Here we demonstrate that in Malaysian adults with falciparum and vivax malaria, OPG is increased, and its ligands TRAIL and RANKL decreased, in proportion to disease severity. In volunteers experimentally infected with P. falciparum and P. vivax, RANKL was suppressed, while TRAIL was unexpectedly increased, suggesting binding of OPG to RANKL prior to TRAIL. We also demonstrate that P. falciparum stimulates B cells to produce OPG in vitro, and that B cell OPG production is increased ex vivo in patients with falciparum, vivax and knowlesi malaria. Our findings provide further evidence of the importance of the OPG/RANKL/TRAIL pathway in pathogenesis of diseases involving systemic inflammation, and may have implications for adjunctive therapies. Further evaluation of the role of B cell production of OPG in host responses to malaria and other inflammatory diseases is warranted.

6.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126003

ABSTRACT

Periapical lesions are common pathologies affecting the alveolar bone, often initiated by intraradicular lesions resulting from microbial exposure to dental pulp. These microorganisms trigger inflammatory and immune responses. When endodontic treatment fails to eliminate the infection, periapical lesions persist, leading to bone loss. The RANK/RANKL/OPG pathway plays a crucial role in both the formation and the destruction of the bone. In this study, the objective was to inhibit the RANK/RANKL pathway in vitro within exposed Thp-1 macrophages to endodontic microorganisms, specifically Enterococcus faecalis, which was isolated from root canals of 20 patients with endodontic secondary/persistent infection, symptomatic and asymptomatic, and utilizing an α-IRAK-4 inhibitor, we introduced endodontic microorganisms and/or lipoteichoic acid from Streptococcus spp. to cellular cultures in a culture plate, containing thp-1 cells and/or PBMC from patients with apical periodontitis. Subsequently, we assessed the percentages of RANK+, RANKL+, and OPG+ cells through flow cytometry and measured the levels of several inflammatory cytokines (IL-1ß, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) in the cellular culture supernatant through a CBA kit and performed analysis by flow cytometry. A significant difference was observed in the percentages of RANK+RANKL+, OPG+ RANKL+ cells in thp-1 cells and PBMCs from patients with apical periodontitis. The findings revealed significant differences in the percentages of the evaluated cells, highlighting the novel role of the IRAK-4 inhibitor in addressing this oral pathology, apical periodontitis, where bone destruction is observed.


Subject(s)
Macrophages , Periapical Periodontitis , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Signal Transduction , Humans , RANK Ligand/metabolism , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , THP-1 Cells , Receptor Activator of Nuclear Factor-kappa B/metabolism , Periapical Periodontitis/metabolism , Periapical Periodontitis/microbiology , Periapical Periodontitis/pathology , Cytokines/metabolism , Enterococcus faecalis , Lipopolysaccharides , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/metabolism , Male , Osteoprotegerin/metabolism , Adult , Teichoic Acids/pharmacology
7.
Front Cell Infect Microbiol ; 14: 1416537, 2024.
Article in English | MEDLINE | ID: mdl-39040600

ABSTRACT

Infection of ruminants such as cattle with Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a disease characterized by chronic inflammation of the small intestine and diarrhoea. Infection with MAP is acquired via the faecal-to-oral route and the pathogen initially invades the epithelial lining of the small intestine. In this study we used an in vitro 3D mouse enteroid model to determine the influence of M cells in infection of the gut epithelia by MAP, in comparison with another bacterial intestinal pathogen of veterinary importance, Salmonella enterica serovar Typhimurium. The differentiation of M cells in the enteroid cultures was induced by stimulation with the cytokine receptor activator of nuclear factor-κB ligand (RANKL), and the effects on MAP and Salmonella uptake and intracellular survival were determined. The presence of M cells in the cultures correlated with increased uptake and intracellular survival of Salmonella, but had no effect on MAP. Interestingly neither pathogen was observed to preferentially accumulate within GP2-positive M cells.


Subject(s)
Mycobacterium avium subsp. paratuberculosis , Salmonella typhimurium , Animals , Mycobacterium avium subsp. paratuberculosis/physiology , Salmonella typhimurium/physiology , Salmonella typhimurium/pathogenicity , Mice , Paratuberculosis/microbiology , Microbial Viability , Intestinal Mucosa/microbiology , Cattle , M Cells
8.
J Periodontal Res ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044454

ABSTRACT

Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.

9.
Stem Cell Res Ther ; 15(1): 203, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971808

ABSTRACT

BACKGROUND: Skeletal Stem Cells (SSCs) are required for skeletal development, homeostasis, and repair. The perspective of their wide application in regenerative medicine approaches has supported research in this field, even though so far results in the clinic have not reached expectations, possibly due also to partial knowledge of intrinsic, potentially actionable SSC regulatory factors. Among them, the pleiotropic cytokine RANKL, with essential roles also in bone biology, is a candidate deserving deep investigation. METHODS: To dissect the role of the RANKL cytokine in SSC biology, we performed ex vivo characterization of SSCs and downstream progenitors (SSPCs) in mice lacking Rankl (Rankl-/-) by means of cytofluorimetric sorting and analysis of SSC populations from different skeletal compartments, gene expression analysis, and in vitro osteogenic differentiation. In addition, we assessed the effect of the pharmacological treatment with the anti-RANKL blocking antibody Denosumab (approved for therapy in patients with pathological bone loss) on the osteogenic potential of bone marrow-derived stromal cells from human healthy subjects (hBMSCs). RESULTS: We found that, regardless of the ossification type of bone, osteochondral SSCs had a higher frequency and impaired differentiation along the osteochondrogenic lineage in Rankl-/- mice as compared to wild-type. Rankl-/- mice also had increased frequency of committed osteochondrogenic and adipogenic progenitor cells deriving from perivascular SSCs. These changes were not due to the peculiar bone phenotype of increased density caused by lack of osteoclast resorption (defined osteopetrosis); indeed, they were not found in another osteopetrotic mouse model, i.e., the oc/oc mouse, and were therefore not due to osteopetrosis per se. In addition, Rankl-/- SSCs and primary osteoblasts showed reduced mineralization capacity. Of note, hBMSCs treated in vitro with Denosumab had reduced osteogenic capacity compared to control cultures. CONCLUSIONS: We provide for the first time the characterization of SSPCs from mouse models of severe recessive osteopetrosis. We demonstrate that Rankl genetic deficiency in murine SSCs and functional blockade in hBMSCs reduce their osteogenic potential. Therefore, we propose that RANKL is an important regulatory factor of SSC features with translational relevance.


Subject(s)
Cell Differentiation , Osteogenesis , RANK Ligand , Animals , RANK Ligand/metabolism , RANK Ligand/genetics , Mice , Osteogenesis/genetics , Humans , Stem Cells/metabolism , Stem Cells/cytology , Mice, Knockout , Denosumab/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Mice, Inbred C57BL
10.
Adv Cancer Res ; 161: 321-365, 2024.
Article in English | MEDLINE | ID: mdl-39032953

ABSTRACT

Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Humans , Bone Neoplasms/secondary , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Male , Animals , Tumor Microenvironment , Signal Transduction
11.
J Bone Miner Metab ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060500

ABSTRACT

Bone functions not only as a critical element of the musculoskeletal system but also serves as the primary lymphoid organ harboring hematopoietic stem cells (HSCs) and immune progenitor cells. The interdisciplinary field of osteoimmunology has illuminated the dynamic interactions between the skeletal and immune systems, vital for the maintenance of skeletal tissue homeostasis and the pathogenesis of immune and skeletal diseases. Aberrant immune activation stimulates bone cells such as osteoclasts and osteoblasts, disturbing the bone remodeling and leading to skeletal disorders as seen in autoimmune diseases like rheumatoid arthritis. On the other hand, intricate multicellular network within the bone marrow creates a specialized microenvironment essential for the maintenance and differentiation of HSCs and the progeny. Dysregulation of immune-bone crosstalk in the bone marrow environment can trigger tumorigenesis and exacerbated inflammation. A comprehensive deciphering of the complex "immune-bone crosstalk" leads to a deeper understanding of the pathogenesis of immune diseases as well as skeletal diseases, and might provide insight into potential therapeutic approaches.

12.
Bioorg Med Chem Lett ; 110: 129884, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38996939

ABSTRACT

Both cyclopropyl amide and piperazine sulfonamide functional groups are known for their various biological properties used for drug development. Herein, we synthesized nine new derivatives with different substituent groups incorporating these moieties and screened them for their anti-osteoclast differentiation activity. After analyzing the structure-activity relationship (SAR), the inhibitory effect against osteoclastogenesis was determined to be dependent on the lipophilicity of the compound. Derivative 5b emerged as the most effective dose-dependent inhibitor after TRAP staining with an IC50 of 0.64 µM against RANKL-induced osteoclast cells. 5b was also able to suppress F-acting ring formation and bone resorption activity of osteoclasts in vitro. Finally, well-acknowledged gene and protein osteoclast-specific marker expression levels were decreased after 5b administration on primary murine osteoclast cells.


Subject(s)
Benzamides , Cell Differentiation , Osteoclasts , RANK Ligand , Osteoclasts/drug effects , Osteoclasts/metabolism , Cell Differentiation/drug effects , Animals , Structure-Activity Relationship , RANK Ligand/pharmacology , RANK Ligand/antagonists & inhibitors , Mice , Benzamides/pharmacology , Benzamides/chemical synthesis , Benzamides/chemistry , Molecular Structure , Dose-Response Relationship, Drug
13.
Cureus ; 16(6): e63362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39070363

ABSTRACT

BACKGROUND AND OBJECTIVE: Breast cancer (BC) remains a significant health concern, particularly in advanced stages where the prognosis is poor. The combination of endocrine therapy (ET) with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) has improved outcomes for advanced BC (aBC) patients. However, resistance to CDK4/6i remains a challenge, with no validated biomarkers to predict response. The receptor activator of the nuclear factor-kB (RANK) pathway has emerged as a key player in aBC, particularly in luminal BC. RANK overexpression has been associated with aggressive phenotypes and resistance to therapy. In view of these findings, we proceeded to investigate the potential involvement of the RANK pathway in luminal BC resistance to CDK4/6i. The objective was to evaluate the effectiveness of denosumab in increasing overall survival (OS) and progression-free survival (PFS). METHODS: In this retrospective analysis, 158 BC patients with bone metastases were included. Patients with human epidermal growth factor receptor-2 (HER2)-negative and hormone receptor-positive BC who received palbociclib or ribociclib in addition to antiresorptive medication were included. Patients received either denosumab or zoledronic acid (ZA) therapy. The primary endpoint was OS, with PFS as a secondary endpoint. RESULTS: Although the PFS and OS of denosumab were better than ZA in this study, it did not show a significant difference between the two drugs. Meanwhile, mOS was not achievable in patients in the denosumab group, while it was 34.1 months in patients in the ZA group. The hazard ratio (HR) showed a significant improvement for the denosumab group in patients under 60 of age (HR: 0.33, p<0.01), patients with a score of 1 HER2 overexpression (HR: 0.09, p=0.01), and patients with resistant endocrine (HR: 0.42, p=0.02) compared to ZA. CONCLUSION: This study highlights the potential clinical relevance of the RANK pathway in BC treatment, and our findings suggest that denosumab may offer significant benefits in terms of PFS and OS for certain subgroups, particularly those with HER2 scores of 1, patients under 60, and those with endocrine-resistant BC. In conclusion, considering that RANK pathway status may be a predictive biomarker for CDK4/6i treatment and may cause treatment resistance, our results demonstrate the clinical relevance of the combination of CDK4/6i + ET with RANKL inhibition.

14.
Article in English | MEDLINE | ID: mdl-39049782

ABSTRACT

CONTEXT: The pathophysiology of cystinosis-associated metabolic bone disease is complex. OBJECTIVE: We hypothesized a disturbed interaction between osteoblasts and osteoclasts. DESIGN: Binational cross-sectional multicenter study. SETTING: Hospital clinics. PATIENTS: One hundred and three patients with cystinosis (61% children) with chronic kidney disease (CKD) stages 1-5D/T. MAIN OUTCOME MEASURES: Ten key bone markers. RESULTS: Skeletal complications occurred in two-thirds of the patients, with adults having a five-fold increased risk compared to children. Patients with CKD stages 1-3 showed reduced z-scores for serum phosphate and calcium, suppressed fibroblast growth factor 23 (FGF23) and parathyroid hormone levels in conjunction with elevated bone-specific alkaline phosphatase levels. Serum phosphate was associated with estimated glomerular filtration rate, combined phosphate and active vitamin D treatment, and native vitamin D supplementation, while serum calcium was associated with age and dosage of active vitamin D. Sclerostin was generally elevated in children, and associated with age, FGF23 levels, and treatment with active vitamin D and growth hormone. The osteoclast marker tartrate-resistant acid phosphatase 5b was increased, and associated with age and treatment with active vitamin D. The ratio of soluble ligand of receptor activator of nuclear factor-κB (sRANKL) and osteoprotegerin (OPG), a surrogate for the regulation of osteoclastogenesis by osteoblasts, was decreased and associated with phosphate and 1,25(OH)2D3 levels. These changes were only partly corrected after transplantation. CONCLUSIONS: Bone health in cystinosis deteriorates with age, which is associated with increased osteoclast activity despite counterregulation of osteoblasts via OPG/RANKL, which in conjunction with elevated sclerostin levels and persistent rickets/osteomalacia may promote progressive bone loss.

15.
Bone ; 187: 117181, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38960295

ABSTRACT

Staphylococcus aureus osteomyelitis leads to extensive bone destruction. Osteoclasts are bone resorbing cells that are often increased in bone infected with S. aureus. The cytokine RANKL is essential for osteoclast formation under physiological conditions but in vitro evidence suggests that inflammatory cytokines may by-pass the requirement for RANKL. The goal of this study was to determine whether RANKL-dependent osteoclast formation is essential for the bone loss that occurs in a murine model of S. aureus osteomyelitis. To this end, humanized-RANKL mice were infected by direct inoculation of S. aureus into a unicortical defect in the femur. Mice were treated with vehicle or denosumab, a human monoclonal antibody that inhibits RANKL, both before and during a 14-day infection period. The severe cortical bone destruction caused by infection was completely prevented by denosumab administration even though the bacterial burden in the femur was not affected. Osteoclasts were abundant near the inoculation site in vehicle-treated mice but absent in denosumab-treated mice. In situ hybridization demonstrated that S. aureus infection potently stimulated RANKL expression in bone marrow stromal cells. The extensive reactive bone formation that occurs in this osteomyelitis model was also reduced by denosumab administration. Lastly, there was a notable lack of osteoblasts near the infection site suggesting that the normal coupling of bone formation to bone resorption was disrupted by S. aureus infection. These results demonstrate that RANKL-mediated osteoclast formation is required for the bone loss that occurs in S. aureus infection and suggest that disruption of the coupling of bone formation to bone resorption may also contribute to bone loss in this condition.


Subject(s)
Bone Resorption , Denosumab , Disease Models, Animal , Osteoclasts , Osteomyelitis , RANK Ligand , Staphylococcal Infections , Staphylococcus aureus , Animals , Osteomyelitis/microbiology , Osteomyelitis/pathology , Osteomyelitis/metabolism , RANK Ligand/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Mice , Bone Resorption/pathology , Bone Resorption/microbiology , Bone Resorption/metabolism , Denosumab/pharmacology , Humans , Femur/pathology , Femur/microbiology , Antibodies, Monoclonal, Humanized/pharmacology
16.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931459

ABSTRACT

BACKGROUND: Periodontitis preceded by gingivitis is the most common form of periodontal disease and occurs due to the interaction of microorganisms present in the complex bacterial aggregates of dental plaque biofilm and their metabolism products with periodontal tissues. Histamine is a heterocyclic biogenic amine acting via four types of receptors. Histamine H3 receptors act as presynaptic auto/heteroreceptors to regulate the release of histamine and other neurotransmitters. AIM: Since the nervous system is able to regulate the progression of the inflammatory process and bone metabolism, the aim of this study was to investigate the effects of DL76, which acts as an antagonist/inverse agonist of H3 receptors, on the course of experimental periodontitis. MATERIALS AND METHODS: This study was conducted in 24 mature male Wistar rats weighing 245-360 g, aged 6-8 weeks. A silk ligature was placed on the second maxillary molar of the right maxilla under general anesthesia. From the day of ligating, DL76 and 0.9% NaCl solutions were administered subcutaneously for 28 days in the experimental and control groups, respectively. After the experiment, histopathological, immunohistochemical and radiological examinations were performed. RESULTS: Ligation led to the development of the inflammatory process with lymphocytic infiltration, increased epithelial RANKL and OPG expression as well as bone resorption. DL76 evoked a reduction in (1) lymphocytic infiltration, (2) RANKL and OPG expression as well as (3) bone resorption since the medians of the mesial and distal interdental spaces in the molars with induced periodontitis were 3.56-fold and 10-fold lower compared to the corresponding values in saline-treated animals with periodontitis. CONCLUSION: DL76 is able to inhibit the progression of experimental periodontitis in rats, as demonstrated by a reduction in the inflammatory cell infiltration, a decrease in the RANKL/RANK OPG pathway expression and a reduction in the alveolar bone resorption.

17.
Calcif Tissue Int ; 115(2): 124-131, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878178

ABSTRACT

Depression and osteoporosis are common diseases in dialysis patients. In addition, patients with osteoporosis are more susceptible to depression. Contrary to previous anti-osteoporosis agents, denosumab and romosozumab could be used in dialysis patients and have similar action mechanisms for blocking RANKL. RANKL causes bone resorption after binding RANKL, but binding with OPG leads to suppress of bone resorption. In recent mice study, inhibition of RANKL with denosumab improved depressive-like phenotype. Besides, it was found that OPG was associated with depression. Therefore, this study aimed to investigate the association of depressive symptoms with RANKL and OPG in hemodialysis patients. We conducted a cross-sectional study with a total of 172 hemodialysis patients. The participants were measured for plasma RANKL, OPG, MMP-2, and MMP-9 levels. Logistic regression analysis was performed to evaluate the effect of RANKL and OPG on the presence of depressive symptoms. The depressive symptoms were observed in 90 (52.3%) subjects. RANKL tertile 3 had negative association with BDI score (ß - 4.527, 95% CI - 8.310 to - 0.743) in univariate analysis, and this association persisted even after multivariate adjustments (ß - 5.603, 95% CI - 9.715 to -1.491) in linear regression. In logistic regression between RANKL tertiles and depressive symptoms, RANKL tertile 3 had significantly lower unadjusted OR (0.40, 95% CI 0.19-0.86), and multivariate-adjusted OR (0.31, 95% CI 0.12-0.82) for depressive symptoms. OPG was not significantly associated with depressive symptoms. Higher plasma RANKL concentrations were significantly associated with lower depressive symptoms in HD patients.Trial registration WHO registry, No. KCT0003281, date: January 12, 2017.


Subject(s)
Depression , RANK Ligand , Renal Dialysis , Humans , RANK Ligand/blood , Female , Male , Renal Dialysis/adverse effects , Middle Aged , Depression/blood , Cross-Sectional Studies , Aged , Osteoprotegerin/blood , Osteoporosis/blood
18.
BMC Nephrol ; 25(1): 205, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910256

ABSTRACT

BACKGROUND: Sepsis-associated acute kidney injury (SA-AKI) has high mortality rates. The osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK)/Toll-like receptor 4 (TLR4) pathway and its potential role in SA-AKI pathogenesis remain to be fully understood. Herein, we addressed this issue using mouse models. METHODS: An SA-AKI mouse model was established using the cecal ligation and puncture method (CLP). Mice were grouped into sham, CLP model, CLP + recombinant RANKL, and CLP + anti-RANKL groups. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured to assess kidney function. ELISA was used to detect serum IL-1ß, TNF-α, and IL-6 levels. Real-time quantitative PCR and Western blot were used to detect the mRNA and protein expression levels of OPG, RANKL, RANK, and TLR4 in kidney tissues. HE staining was performed to evaluate the pathological changes. RESULTS: The CLP model group showed higher levels of Scr and BUN, indicating impaired kidney function in SA-AKI, compared to the sham group. Treatment with recombinant RANKL in the CLP + recombinant RANKL group reduced Scr and BUN levels, while anti-RANKL treatment in the CLP + anti-RANKL group elevated their levels. Moreover, the CLP model group had significantly increased IL-1ß, TNF-α, and IL-6 than the sham group, indicating elevated inflammation in SA-AKI. The CLP + recombinant RANKL group demonstrated decreased cytokine levels, whereas the CLP + anti-RANKL group showed an increase. Additionally, the histopathological evaluation revealed distinct kidney tissue damage in the CLP model group. Recombinant RANKL treatment reduced this damage, while anti-RANKL treatment exacerbated it. Mechanically, the mRNA and protein expression of RANKL were significantly decreased, while those of OPG, RANK, and TLR4 were significantly increased in the CLP model group and the CLP + anti-RANKL group. Interestingly, treatment with recombinant RANKL reversed these changes, as evidenced by significantly increased RANKL but decreased OPG, RANK, and TLR4. CONCLUSION: The OPG/RANKL/RANK/TLR4 pathway is involved in SA-AKI pathogenesis. Recombinant RANKL treatment attenuates the inflammatory response and kidney tissue damage in SA-AKI, possibly via regulating this pathway. This pathway shows promise as a therapeutic target for SA-AKI.


Subject(s)
Acute Kidney Injury , Osteoprotegerin , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Sepsis , Signal Transduction , Toll-Like Receptor 4 , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Toll-Like Receptor 4/metabolism , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Mice , Sepsis/complications , Sepsis/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal
19.
JBMR Plus ; 8(7): ziae066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38855797

ABSTRACT

Bone disease associated with multiple myeloma (MM) is characterized by osteolytic lesions and pathological fractures, which remain a therapeutic priority despite new drugs improving MM patient survival. Antiresorptive molecules represent the main option for the treatment of MM-associated bone disease (MMBD), whereas osteoanabolic molecules are under investigation. Among these latter, we here focused on the myokine irisin, which is able to enhance bone mass in healthy mice, prevent bone loss in osteoporotic mouse models, and accelerate fracture healing in mice. Therefore, we investigated irisin effect on MMBD in a mouse model of MM induced by intratibial injection of myeloma cells followed by weekly administration of 100 µg/kg of recombinant irisin for 5 wk. By micro-Ct analysis, we demonstrated that irisin improves MM-induced trabecular bone damage by partially preventing the reduction of femur Trabecular Bone Volume/Total Volume (P = .0028), Trabecular Number (P = .0076), Trabecular Fractal Dimension (P = .0044), and increasing Trabecular Separation (P = .0003) in MM mice. In cortical bone, irisin downregulates the expression of Sclerostin, a bone formation inhibitor, and RankL, a pro-osteoclastogenic molecule, while in BM it upregulates Opg, an anti-osteoclastogenic cytokine. We found that in the BM tibia of irisin-treated MM mice, the percentage of MM cells displays a reduction trend, while in the femur it decreases significantly. This is in line with the in vitro reduction of myeloma cell viability after 48 h of irisin stimulation at both 200 and 500 ng/mL and, after 72 h already at 100 ng/mL rec-irisin. These results could be due to irisin ability to downregulate the expression of Notch 3, which is important for cell-to-cell communication in the tumor niche, and Cyclin D1, supporting an inhibitory effect of irisin on MM cell proliferation. Overall, our findings suggest that irisin could be a new promising strategy to counteract MMBD and tumor burden in one shot.

20.
Aging (Albany NY) ; 16(11): 9569-9583, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862240

ABSTRACT

The global prevalence of osteoporosis is being exacerbated by the increasing number of aging societies and longer life expectancies. In response, numerous drugs have been developed in recent years to mitigate bone resorption and enhance bone density. Nonetheless, the efficacy and safety of these pharmaceutical interventions remain constrained. Corylin (CL), a naturally occurring compound derived from the anti-osteoporosis plant Psoralea corylifolia L., has exhibited promising potential in impeding osteoclast differentiation. This study aims to evaluate the effect and molecular mechanisms of CL regulating osteoclast differentiation in vitro and its potential as a therapeutic agent for osteoporosis treatment in vivo. Our investigation revealed that CL effectively inhibits osteoclast formation and their bone resorption capacity by downregulating the transcription factors NFATc1 and c-fos, consequently resulting in the downregulation of genes associated with bone resorption. Furthermore, it has been observed that CL can effectively mitigate the migration and fusion of pre-osteoclast, while also attenuating the activation of mitochondrial mass and function. The results obtained from an in vivo study have demonstrated that CL is capable of attenuating the bone loss induced by ovariectomy (OVX). Based on these significant findings, it is proposed that CL exhibits considerable potential as a novel drug strategy for inhibiting osteoclast differentiation, thereby offering a promising approach for the treatment of osteoporosis.


Subject(s)
Bone Resorption , Cell Differentiation , Osteoclasts , Osteoporosis , Animals , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis/drug therapy , Cell Differentiation/drug effects , Mice , Bone Resorption/drug therapy , Female , Ovariectomy/adverse effects , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , RAW 264.7 Cells , Osteogenesis/drug effects , Flavonoids
SELECTION OF CITATIONS
SEARCH DETAIL