Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Vet Microbiol ; 298: 110237, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39217891

ABSTRACT

Foot-and-mouth disease virus (FMDV), a member of picornavirus, can enter into host cell via macropinocytosis. Although it is known that receptor tyrosine kinases (RTKs) play a crucial role in FMDV macropinocytic entry, the specific RTK responsible for regulating this process and the intricacies of RTK-mediated downstream signaling remain to be elucidated. Here, we conducted a screening of RTK inhibitors to assess their efficacy against FMDV. Our findings revealed that two compounds specifically targeting fibroblast growth factor receptor 1 (FGFR1) and FMS-like tyrosine kinase 3 (FLT3) significantly disrupted FMDV entry. Furthermore, additional evaluation through gene knockdown and overexpression confirmed the promotion effect of FGFR1 and FLT3 on FMDV entry. Interestingly, we discovered that the increasement of FMDV entry facilitated by FGFR1 and FLT3 can be ascribed to increased macropinocytic uptake. Additionally, in-depth mechanistic study demonstrated that FGFR1 interacts with FMDV VP3 and undergoes phosphorylation during FMDV entry. Furthermore, the FGFR1 inhibitor inhibited FMDV-induced activation of p21-activated kinase 1 (PAK1) on Thr212 and Thr423 sites. Consistent with these findings, the ectopic expression of FGFR1 resulted in a concomitant increase in phosphorylation level of PAK1 on Thr212 and Thr423 sites. Taken together, our findings represent the initial exploration of FGFR1's involvement in FMDV macropinocytic entry, providing novel insights with potential implications for the development of antiviral strategies.

2.
Neurooncol Adv ; 6(1): vdae107, 2024.
Article in English | MEDLINE | ID: mdl-39022647

ABSTRACT

Vestibular schwannomas are rare intracranial tumors originating from Schwann cells of the vestibular nerve. Despite their benign nature, these tumors can exert significant mass effects and debilitating symptoms, including gradual hearing loss, vertigo, facial nerve dysfunction, and headaches. Current clinical management options encompass wait-and-scan, surgery, radiation therapy, and off-label medication. However, each approach exhibits its own challenges and harbors limitations that underscore the urgent need for therapeutic treatments. Over the past 2 decades, extensive elucidation of the molecular underpinnings of vestibular schwannomas has unraveled genetic anomalies, dysregulated signaling pathways, downstream of receptor tyrosine kinases, disrupted extracellular matrix, inflammatory tumor microenvironment, and altered cerebrospinal fluid composition as integral factors in driving the development and progression of the disease. Armed with this knowledge, novel therapeutic interventions tailored to the unique molecular characteristics of those conditions are actively being pursued. This review underscores the urgency of addressing the dearth of Food and Drug Administration-approved drugs for vestibular schwannoma, highlighting the key molecular discoveries and their potential translation into therapeutics. It provides an in-depth exploration of the evolving landscape of therapeutic development, which is currently advancing from bench to bedside. These ongoing efforts hold the promise of significantly transforming the lives of vestibular schwannoma patients in the future.

3.
Methods Mol Biol ; 2800: 189-202, 2024.
Article in English | MEDLINE | ID: mdl-38709485

ABSTRACT

Understanding how signaling networks are regulated offers valuable insights into how cells and organisms react to internal and external stimuli and is crucial for developing novel strategies to treat diseases. To achieve this, it is necessary to delineate the intricate interactions between the nodes in the network, which can be accomplished by measuring the activities of individual nodes under perturbation conditions. To facilitate this, we have recently developed a biosensor barcoding technique that enables massively multiplexed tracking of numerous signaling activities in live cells using genetically encoded fluorescent biosensors. In this chapter, we detail how we employed this method to reconstruct the EGFR signaling network by systematically monitoring the activities of individual nodes under perturbations.


Subject(s)
Biosensing Techniques , Signal Transduction , Biosensing Techniques/methods , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics
4.
J Cancer ; 15(8): 2361-2372, 2024.
Article in English | MEDLINE | ID: mdl-38495504

ABSTRACT

Objective: To investigate the inhibitory effect of EVO on colorectal cancer (CRC) growth and further explore the potential mechanism involving the RTKs-mediated PI3K/AKT/p53 signaling pathway. Methods: Firstly, the inhibitory effect of EVO on CRC cells was detected in vitro by cell viability assay and colony formation assay. The effects of EVO on spatial migration and invasion capacity of cells were detected by Transwell assay. The effects of EVO on apoptosis and cycle of cells were detected by flow cytometry. Then, the molecular mechanism of EVO against CRC was revealed by qRT-PCR and Western blot. Finally, the excellent anti-tumour activity of EVO was verified by in vivo experiments. Results: The results demonstrated that EVO exerts inhibitory effects on CRC cell proliferation, invasion, and colony formation. The cell cycle assay revealed that EVO induces G1/S phase arrest. Through RNA seq, we explored the influence of EVO on the transcriptional profile of colon cancer and observed significant activation of RTKs and the PI3K/AKT pathway, along with its downstream signaling pathways. Furthermore, we observed upregulation of p53 proteins by EVO, which led to the inhibition of Bcl-2 expression and an increase in Bax expression. Consistently, EVO exhibited remarkable suppression of tumor xenograft growth in nude mice. Conclusion: This study confirmed that EVO inhibits the proliferation of CRC cells and promotes cell apoptosis. The possible mechanism of action is inhibiting the expression of the RTK protein family, activating the PI3K/AKT/p53 apoptotic signaling pathway, thereby inhibiting Bcl-2 expression and increasing Bax expression, promoting apoptosis of CRC cells. As a natural product, EVO has very high potential application value.

5.
Mol Biol Rep ; 51(1): 337, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393520

ABSTRACT

The protein encoded by the ephrin type-A receptor 2 (EphA2) gene is a member of the ephrin receptor subfamily of the receptor tyrosine kinase family (RTKs). Eph receptors play a significant role in various biological processes, particularly cancer progression, development, and pathogenesis. They have been observed to regulate cancer cell growth, migration, invasion, tumor development, invasiveness, angiogenesis, and metastasis. To target EphA2 activity, various molecular, genetic, biochemical, and pharmacological strategies have been extensively tested in laboratory cultures and animal models. Notably, drugs, such as dasatinib, initially designed to target the kinase family, have demonstrated an additional capability to target EphA2 activity. Additionally, a novel monoclonal antibody named EA5 has emerged as a promising option to counteract the effects of EphA2 overexpression and restore tamoxifen sensitivity in EphA2-transfected MCF-7 cells during in vitro experiments. This antibody mimicked the binding of Ephrin A to EphA2. These methods offer potential avenues for inhibiting EphA2 activity, which could significantly decelerate breast cancer progression and restore sensitivity to certain drugs. This review article comprehensively covers EphA2's involvement in multiple malignancies, including ovarian, colorectal, breast, lung, glioma, and melanoma. Furthermore, we discuss the structure of EphA2, the Eph-Ephrin signaling pathway, various EphA2 inhibitors, and the mechanisms of EphA2 degradation. This article provides an extensive overview of EphA2's vital role in different types of cancers and outlines potential therapeutic approaches to target EphA2, shedding light on the underlying molecular mechanisms that make it an attractive target for cancer treatment.


Subject(s)
Neoplasms , Receptor, EphA2 , Animals , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Ephrins/pharmacology , Cell Line, Tumor
6.
Front Immunol ; 15: 1376045, 2024.
Article in English | MEDLINE | ID: mdl-38357544

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2023.1332057.].

8.
Hum Cell ; 37(1): 297-309, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37914903

ABSTRACT

Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60-80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30-60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10-30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-met , Receptor Protein-Tyrosine Kinases , Rhabdomyosarcoma, Alveolar , Humans , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Rhabdomyosarcoma, Alveolar/diagnosis , Rhabdomyosarcoma, Alveolar/enzymology , Rhabdomyosarcoma, Alveolar/pathology , Proto-Oncogene Proteins c-met/genetics , Biomarkers, Tumor/genetics , Drug Delivery Systems , Survival Analysis , Male , Female , Infant , Child, Preschool , Child , Adolescent , Multigene Family/genetics , Principal Component Analysis , Gene Expression Profiling
9.
Cancers (Basel) ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067240

ABSTRACT

According to recent evidence, some groups of semaphorins (SEMAs) have been associated with cancer progression. These proteins are able to modulate the cellular signaling of particular receptor tyrosine kinases (RTKs) via the stimulation of SEMA-specific coreceptors, namely plexins (plexin-A, -B, -C, -D) and neuropilins (Np1, Np2), which share common domains with RTKs, leading to the coactivation of the latter receptors. MET, ERBB2, VEGFR2, PFGFR, and EGFR, among others, represent acknowledged targets of semaphorins that are often associated with tumor progression or poor prognosis. In particular, higher expression of SEMA6 family proteins in cancer cells and stromal cells of the cancer niche is often associated with enhanced tumor angiogenesis, metastasis, and resistance to anticancer therapy. Notably, high SEMA6 expression in malignant tumor cells such as melanoma, pleural mesothelioma, gastric cancer, lung adenocarcinoma, and glioblastoma may serve as a prognostic biomarker of tumor progression. To date, very few studies have focused on the mechanisms of transmembrane SEMA6-driven tumor progression and its underlying interplay with RTKs within the tumor microenvironment. This review presents the growing evidence in the literature on the complex and shaping role of SEMA6 family proteins in cancer responsiveness to environmental stimuli.

10.
Eur J Med Chem ; 262: 115918, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37922829

ABSTRACT

Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 µM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 µM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 µM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.


Subject(s)
Antineoplastic Agents , Humans , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor , Antineoplastic Agents/chemistry , Cell Proliferation , Pyrimidines/chemistry , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases
11.
Onco Targets Ther ; 16: 785-799, 2023.
Article in English | MEDLINE | ID: mdl-37790582

ABSTRACT

c-Kit is a type III receptor tyrosine kinase (RTK) that has an essential role in various biological functions including gametogenesis, melanogenesis, hematopoiesis, cell survival, and apoptosis. c-KIT aberrations, either overexpression or loss-of-function mutations, have been implicated in the pathogenesis and development of many cancers, including gastrointestinal stromal tumors, mastocytosis, acute myeloid leukemia, breast, thyroid, and colorectal cancer, making c-KIT an attractive molecular target for the treatment of cancers. Therefore, a lot of effort has been put into investigating the utility of tyrosine kinase inhibitors for the management of c-KIT mutated tumors. This review of the literature illustrates the role of c-KIT mutations in many cancers, aiming to provide insights into the role of TKIs as a therapeutic option for cancer patients with c-KIT aberrations. In conclusion, c-KIT is implicated in different types of cancer, and it could be a successful molecular target; however, proper detection of the underlying mutation type is required before starting the appropriate personalized therapy.

12.
J Cell Commun Signal ; 17(3): 549-561, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37103689

ABSTRACT

Hepatic fibrosis is the common pathological change that occurs due to increased synthesis and accumulation of extracellular matrix components. Chronic insult from hepatotoxicants leads to liver cirrhosis, which if not reversed timely using appropriate therapeutics, liver transplantation remains the only effective therapy. Often the disease further progresses into hepatic carcinoma. Although there is an increased advancement in understanding the pathological phenotypes of the disease, additional knowledge of the novel molecular signaling mechanisms involved in the disease progression would enable the development of efficacious therapeutics. Ephrin-Eph molecules belong to the largest family of receptor tyrosine kinases (RTKs) which are identified to play a crucial role in cellular migratory functions, during morphological and developmental stages. Additionally, they contribute to the growth of a multicellular organism as well as in pathological conditions like cancer, and diabetes. A wide spectrum of mechanistic studies has been performed on ephrin-Eph RTKs in various hepatic tissues under both normal and diseased conditions revealing their diverse roles in hepatic pathology. This systematic review summarizes the liver-specific ephrin-Eph RTK signaling mechanisms and recognizes them as druggable targets for mitigating hepatic pathology.

13.
Cell Rep Methods ; 3(3): 100422, 2023 03 27.
Article in English | MEDLINE | ID: mdl-37056381

ABSTRACT

The therapeutic potential of ligands targeting disease-associated membrane proteins is predicted by ligand-receptor binding constants, which can be determined using NanoLuciferase (NanoLuc)-based bioluminescence resonance energy transfer (NanoBRET) methods. However, the broad applicability of these methods is hampered by the restricted availability of fluorescent probes. We describe the use of antibody fragments, like nanobodies, as universal building blocks for fluorescent probes for use in NanoBRET. Our nanobody-NanoBRET (NanoB2) workflow starts with the generation of NanoLuc-tagged receptors and fluorescent nanobodies, enabling homogeneous, real-time monitoring of nanobody-receptor binding. Moreover, NanoB2 facilitates the assessment of receptor binding of unlabeled ligands in competition binding experiments. The broad significance is illustrated by the successful application of NanoB2 to different drug targets (e.g., multiple G protein-coupled receptors [GPCRs] and a receptor tyrosine kinase [RTK]) at distinct therapeutically relevant binding sites (i.e., extracellular and intracellular).


Subject(s)
Single-Domain Antibodies , Ligands , Membrane Proteins , Fluorescent Dyes , Receptors, G-Protein-Coupled/metabolism
14.
J Exp Clin Cancer Res ; 42(1): 73, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36978187

ABSTRACT

BACKGROUND: Cisplatin (DDP)-based chemotherapy is commonly adopted as the first-line treatment for patients with oesophageal squamous cell carcinoma (OSCC), but the high rate of drug resistance limits its clinical application and the underlying mechanisms at play remain unclear. The aims of this study were to elucidate the role of abnormal signal transmission and metabolism in the chemoresistance of OSCC under hypoxia and to identify targeted drugs that enhance the sensitivity of DDP chemotherapy. METHODS: Upregulated genes in OSCC were determined by RNA sequencing (RNA-seq), the Cancer Genome Atlas (TCGA) database, immunohistochemistry (IHC), real-time quantitative PCR (RT-qPCR), and western blotting (WB). The clinicopathological significance of insulin-like growth factor-I receptor (IGF1R), argininosuccinate synthetase 1 (ASS1), and pyrroline-5-carboxylate reductase 1 (PYCR1) in OSCC was analysed using tissue micriarray (TMA). Metabolic abnormalities were determined by untargeted metabolomics analysis. The DDP-resistance role of IGF1R, ASS1, and PYCR1 in OSCC was investigated in vitro and in vivo. RESULTS: Generally, tumour cells exist in a hypoxic microenvironment. By genomic profiling, we determined that IGF1R, as a receptor tyrosine kinase (RTK), was upregulated in OSCC under low-oxygen conditions. Clinically, enhanced IGF1R expression was associated with higher tumour stages and a poorer prognosis in OSCC patients, and its inhibitor, linsitinib, showed synergistic effects with DDP therapy in vivo and in vitro. Since oxygen-deprivation frequently lead to metabolic reprogramming, we further learned via metabolomics analysis that abnormal IGF1R pathways promoted the expression of metabolic enzymes ASS1 and PYCR1 by the transcriptional activity of c-MYC. In detail, enhanced expression of ASS1 promotes arginine metabolism for biological anabolism, whereas PYCR1 activates proline metabolism for redox balance, which maintains the proliferation ability of OSCC cells during DDP treatment under hypoxic conditions. CONCLUSION: Enhanced expression of ASS1 and PYCR1 via IGF1R pathways rewired arginine and proline metabolism, promoting DDP resistance in OSCC under hypoxia. Linsitinib targeting IGF1R signaling may lead to promising combination therapy options for OSCC patients with DDP resistance.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Proline/pharmacology , Cell Line, Tumor , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Hypoxia , Arginine/pharmacology , Oxygen , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Tumor Microenvironment , Receptor, IGF Type 1
15.
Cancers (Basel) ; 15(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36980592

ABSTRACT

Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.

16.
Biomolecules ; 13(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36830638

ABSTRACT

Receptor tyrosine kinases (RTKs) form a highly important group of protein receptors of the eukaryotic cell membrane. They control many vital cellular functions and are involved in the regulation of complex signaling networks. Mutations in RTKs have been associated with different types of cancers and other diseases. Although they are very important for proper cell function, they have been experimentally studied in a limited range of eukaryotic species. Currently, there is no available database for RTKs providing information about their function, expression, and interactions. Therefore, the identification of RTKs in multiple organisms, the documentation of their characteristics, and the collection of related information would be very useful. In this paper, we present a novel RTK detection pipeline (RTK-PRED) and the Receptor Tyrosine Kinases Database (TyReK-DB). RTK-PRED combines profile HMMs with transmembrane topology prediction to identify and classify potential RTKs. Proteins of all eukaryotic reference proteomes of the UniProt database were used as input in RTK-PRED leading to a filtered dataset of 20,478 RTKs. Based on the information collected for these RTKs from multiple databases, the relational TyReK database was created.


Subject(s)
Neoplasms , Proteome , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Neoplasms/metabolism , Tyrosine
17.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188871, 2023 05.
Article in English | MEDLINE | ID: mdl-36841367

ABSTRACT

Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.


Subject(s)
Cell Cycle Proteins , Triple Negative Breast Neoplasms , Humans , Female , Cell Cycle Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Receptors, Progesterone , Cell Line, Tumor , Tamoxifen
18.
Mol Divers ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790582

ABSTRACT

New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.

19.
J Ethnopharmacol ; 303: 116025, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36496042

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Berberis amurensis Rupr. is used to treat cancer as a traditional herbal medicine. Berbamine (BBM) is a natural bisbenzylisoquinoline alkaloid extracted from Berberis amurensis which possesses multiple pharmacological activity including anticancer. AIM OF THE STUDY: To investigate the influence of BBM on the progression of colorectal cancer (CRC) and further explore the underlying mechanism of BBM based on the RTKs/Akt signaling pathway. MATERIALS AND METHODS: In vitro, cell viability and colony formation were conducted to detect BBM inhibitory of CRC cell lines. Transwell was detected the ability of migration and invasion by BBM. Apoptosis detection assay, cell cycle assay and the measurement of ROS were detected to confirm the inductive effect of cell apoptosis. RT-qPCR and Western blot to clarify the specific mechanism of anticancer. Finally, we conducted HE staining, Ki67, Tunnel and immunochemistry were confirmed the anti-colorectal cancer activity of BBM from vivo study. RESULTS: We found that BBM could inhibit CRC cell lines growth. Moreover, BBM presented an inhibitory effect the ability of migration and invasion in CRC cells. Furthermore, the occurrence of apoptosis was involved in the anti-colorectal cancer role of BBM. BBM also triggered ROS accumulation in CRC cells that might be a key factor for the inductive effect of BBM in cell apoptosis. Cell cycle assay revealed that BBM induced the arrest of G1-S phase and increased the p21 levels but decreased CyclinE1, CyclinE2, CDK6, CyclinD1. RT-qPCR manifested that the down-regulation effect of BBM on AKT1, EGFR, PDGFRα and FGFR4 genes. The results also showed that BBM could decreased the expression levels of phosphor-AKT, PDGFRα, PDGFRß, EGFR, FGFR3 and FGFR4 which belong to RTKs family. Consistently, BBM remarkably suppressed tumor xenograft growth in nude mice. CONCLUSION: Taken together, all the results as presented above suggest that BBM as a novel multitargeted receptor tyrosine kinase inhibitor plays a crucial role in the inhibitory effect of CRC and may be a promising therapeutic agent for the CRC in clinic.


Subject(s)
Benzylisoquinolines , Colorectal Neoplasms , Mice , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Mice, Nude , Reactive Oxygen Species , Receptor, Platelet-Derived Growth Factor alpha , Colorectal Neoplasms/pathology , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Apoptosis , ErbB Receptors/metabolism , Cell Proliferation , Cell Line, Tumor , Cell Movement
20.
J Biomol Struct Dyn ; 41(12): 5597-5613, 2023.
Article in English | MEDLINE | ID: mdl-35822498

ABSTRACT

Combination drug treatments are usually used in many diseases, including cancers and AIDS. This treatment strategy is known as one of the cornerstone in therapies, which potentially reduces drug toxicity and drug resistance and also enhances therapeutic efficacy. Before using a drug in treatment, several experimental studies are done in vivo and in vitro to ensure the drug's efficacy. In such experimental studies, the drug's efficacy is evaluated with the help of drug dose ratio. In the combination drug experimental studies, the efficacy of the drugs is quantified with the Combination Index (CI) value and then interpreted by various terminologies like synergy, additive, and antagonism. Several computational models have now been invented for the speedy identification of combination drug efficacy. Unfortunately, none of these models have predicted the atomic level interaction of the combination drug with the target protein. This type of intermolecular interaction can be identified with the help of docking software. In the proposed work, we try to identify the intermolecular interaction and efficacy of the combination drug Crzizotinib and Temozolomide in the target of EML4-ALK in NSCLC by in silico study. The result of the study was evaluated with drug properties and Complex Energy (CE) of the docked complex rather than using docking score and binding energy. From this study, we could understand that first, Crizotinib and then after the Temozolomide drug binded on the EML4-ALK protein complex, showed very least CE and also identified that the combination of Crizotinib and Temozolomide drug are more effective in NSCLC.Communicated by Ramaswamy H. Sarma.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Crizotinib/pharmacology , Lung Neoplasms/drug therapy , Temozolomide/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Combinations , Receptor Protein-Tyrosine Kinases/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL