Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 2824: 121-133, 2024.
Article in English | MEDLINE | ID: mdl-39039410

ABSTRACT

The Rift Valley fever virus (RVFV), transmitted through mosquito bites, leads to severe illness in humans and livestock throughout Africa and the Arabian Peninsula, causing significant morbidity and mortality. As of now, there are no verified and efficacious drugs or licensed vaccines accessible for the prevention or treatment of RVFV infections in both humans and livestock. The mature RVFV virion has two envelope proteins on its surface: glycoprotein N (GN) and glycoprotein C (GC). These proteins play a significant role in facilitating the virus's entry into the host cell, making them prominent targets for entry mechanism research as well as targets for drugs and vaccine development. The initial stage in obtaining atomic-resolution structural and mechanistic information on viral entry as well as developing biochemical and biophysical research tools involves recombinant protein production. In this chapter, we describe a simplified and scalable protocol facilitating the generation of high-quality, high-titer baculovirus virus for expression and purification of RVFV GC, utilizing the baculovirus-mediated expression system in insect cells.


Subject(s)
Baculoviridae , Recombinant Proteins , Rift Valley fever virus , Viral Envelope Proteins , Baculoviridae/genetics , Animals , Viral Envelope Proteins/genetics , Viral Envelope Proteins/isolation & purification , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Rift Valley fever virus/genetics , Sf9 Cells , Gene Expression , Humans , Genetic Vectors/genetics , Cloning, Molecular/methods
SELECTION OF CITATIONS
SEARCH DETAIL