Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 815
Filter
1.
Vaccine ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834432

ABSTRACT

BACKGROUND: SYN023 is an anti-rabies monoclonal antibody mixture administered as part of post-exposure prophylaxis regimens. The rabies virus neutralizing antibody (RVNA) concentration generally accepted as an adequate immune response to vaccination is ≥ 0.5 IU/mL. METHODS: Within 54 h of potential rabies exposure, 448 patients in two risk substrata of WHO Category III exposure were randomized to receive either 0.3 mg/kg SYN023 or 0.133 mL/kg human rabies immunoglobulin (HRIG) injected in and around the wound site(s) plus a course of rabies vaccination. Patients were followed for safety and absence of rabies for ≥ 365 days. RESULTS: GMT RVNA was higher with SYN023 throughout the 2-week post-treatment period. In the primary analysis group (n = 368), 99.4 % of SYN023 recipients versus 4.5 % of HRIG recipients had protective RVNA levels on Day 4. On Day 8, 98.1 % SYN023 versus 12.2 % HRIG recipients were protected. The SYN023:HRIG ratio of geometric mean titer of RVNA (RVNA GMTs) on Day 8 (19.42) exceeded the 10 % superiority margin (P < 0.0001) indicating higher Day 8 RVNA with SYN023. On Day 99, the SYN023:HRIG RVNA GMT ratio (0.66) was below the non-inferiority margin of 20 % (P = 0.9485) suggesting some moderation of vaccine immune response by SYN023 relative to HRIG. The ratio of percent SYN023:HRIG recipients achieving RVNA ≥ 0.5 IU/mL on Day 99 (0.98) met the non-inferiority margin of 20 % (P = 0.013) indicating anti-rabies immune response with SYN023 was non-inferior to HRIG despite this effect. There were no probable/confirmed rabies cases in any patient. Study regimens were well tolerated. CONCLUSIONS: SYN023 provided higher RVNA than HRIG soon after rabies exposure. By Day 99 post-treatment, GM RVNA with SYN023 was lower than HRIG, however, the percent of SYN023 recipients with a protective response was not inferior at this time point. No rabies cases were reported in the study. The SYN023 safety profile was acceptable. CLINICALTRIALS: gov ID: NCT03961555.

2.
Front Cell Infect Microbiol ; 14: 1394713, 2024.
Article in English | MEDLINE | ID: mdl-38836054

ABSTRACT

The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.


Subject(s)
Glycoproteins , Rabies virus , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Rabies virus/physiology , Rabies virus/metabolism , Humans , Glycoproteins/metabolism , Glycoproteins/genetics , Oocytes/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Host-Pathogen Interactions , Protein Binding , Rabies/metabolism , Rabies/virology , Acetylcholine/metabolism , Acetylcholine/pharmacology , Neurotoxins/metabolism , Neurotoxins/pharmacology
3.
Neurosci Bull ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801564

ABSTRACT

The orbitofrontal cortex (ORB), a region crucial for stimulus-reward association, decision-making, and flexible behaviors, extensively connects with other brain areas. However, brain-wide inputs to projection-defined ORB neurons and the distribution of inhibitory neurons postsynaptic to neurons in specific ORB subregions remain poorly characterized. Here we mapped the inputs of five types of projection-specific ORB neurons and ORB outputs to two types of inhibitory neurons. We found that different projection-defined ORB neurons received inputs from similar cortical and thalamic regions, albeit with quantitative variations, particularly in somatomotor areas and medial groups of the dorsal thalamus. By counting parvalbumin (PV) or somatostatin (SST) interneurons innervated by neurons in specific ORB subregions, we found a higher fraction of PV neurons in sensory cortices and a higher fraction of SST neurons in subcortical regions targeted by medial ORB neurons. These results provide insights into understanding and investigating the function of specific ORB neurons.

4.
Methods Mol Biol ; 2808: 35-56, 2024.
Article in English | MEDLINE | ID: mdl-38743361

ABSTRACT

Mononegaviruses are promising tools as oncolytic and transgene vectors for gene therapy and regenerative medicine. However, when mononegaviruses are used for therapeutic applications, the viral activity must be strictly controlled due to concerns about toxicity and severe side effects. With this technology, mononegavirus vectors can be grown where they are intended and can be easily removed when they are no longer needed. In particular, a photoswitch protein called Magnet (consisting of two magnet domains) is incorporated into the hinge region between the connector and methyltransferase domains of the mononegavirus polymerase protein (L protein) to disrupt the L protein functions. Blue light (470 ± 20 nm) irradiation causes the dimerization of the two magnet domains, and the L protein is restored to activity, allowing viral gene expression and virus replication. Since the magnet domains' dimerization is reversible, viral gene expression and replication cease when blue light irradiation is stopped.


Subject(s)
Gene Expression Regulation, Viral , Virus Replication , Virus Replication/genetics , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Light , Animals , Genetic Vectors/genetics
5.
Antiviral Res ; 227: 105905, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740191

ABSTRACT

The rapid emergence of Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) variants, coupled with severe immune evasion and imprinting, has jeopardized the vaccine efficacy, necessitating urgent development of broad protective vaccines. Here, we propose a strategy employing recombinant rabies viruses (RABV) to create a universal SARS-CoV-2 vaccine expressing heterologous tandem receptor-binding domain (RBD) trimer from the SARS-CoV-2 Prototype, Delta, and Omicron strains (SRV-PDO). The results of mouse immunization indicated that SRV-PDO effectively induced cellular and humoral immune responses, and demonstrated higher immunogenicity and broader SARS-CoV-2 neutralization compared to the recombinant RABVs that only expressed RBD monomers. Moreover, SRV-PDO exhibited full protection against SARS-CoV-2 in the challenge assay. This study demonstrates that recombinant RABV expressing tandem RBD-heterotrimer as a multivalent immunogen could elicit a broad-spectrum immune response and potent protection against SARS-CoV-2, making it a promising candidate for future human or veterinary vaccines and offering a novel perspective in other vaccine design.

6.
Clin Exp Vaccine Res ; 13(2): 171-173, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38752007

ABSTRACT

Alopecia areata (AA) is an autoimmune-related disorder characterized by non-scarring hair loss in children. We report the case of a child who had AA after the fifth dose of rabies vaccine and summarized various potential mechanisms of vaccination induced AA. This case indicates that rabies vaccine might be a predisposition of AA by causing immune dysregulation.

7.
J Virol ; : e0060624, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809020

ABSTRACT

Rabies virus (RABV) is highly lethal and triggers severe neurological symptoms. The neuropathogenic mechanism remains poorly understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a Rho-GTPase that is involved in actin remodeling and has been reported to be closely associated with neuronal dysfunction. In this study, by means of a combination of pharmacological inhibitors, small interfering RNA, and specific dominant-negatives, we characterize the crucial roles of dynamic actin and the regulatory function of Rac1 in RABV infection, dominantly in the viral entry phase. The data show that the RABV phosphoprotein interacts with Rac1. RABV phosphoprotein suppress Rac1 activity and impedes downstream Pak1-Limk1-Cofilin1 signaling, leading to the disruption of F-actin-based structure formation. In early viral infection, the EGFR-Rac1-signaling pathway undergoes a biphasic change, which is first upregulated and subsequently downregulated, corresponding to the RABV entry-induced remodeling pattern of F-actin. Taken together, our findings demonstrate for the first time the role played by the Rac1 signaling pathway in RABV infection and may provide a clue for an explanation for the etiology of rabies neurological pathogenesis.IMPORTANCEThough neuronal dysfunction is predominant in fatal rabies, the detailed mechanism by which rabies virus (RABV) infection causes neurological symptoms remains in question. The actin cytoskeleton is involved in numerous viruses infection and plays a crucial role in maintaining neurological function. The cytoskeletal disruption is closely associated with abnormal nervous symptoms and induces neurogenic diseases. In this study, we show that RABV infection led to the rearrangement of the cytoskeleton as well as the biphasic kinetics of the Rac1 signal transduction. These results help elucidate the mechanism that causes the aberrant neuronal processes by RABV infection and may shed light on therapeutic development aimed at ameliorating neurological disorders.

8.
Bioengineering (Basel) ; 11(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38790353

ABSTRACT

Cell therapy has proven to be a promising treatment for a range of neurological disorders, including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a deep understanding of the functional integration of grafted cells into existing neural networks. This review explores a powerful arsenal of molecular techniques revolutionizing our ability to unveil functional integration of grafted cells within the host brain. From precise manipulation of neuronal activity to pinpoint the functional contribution of transplanted cells by using opto- and chemo-genetics, to real-time monitoring of neuronal dynamics shedding light on functional connectivity within the reconstructed circuits by using genetically encoded (calcium) indicators in vivo. Finally, structural reconstruction and mapping communication pathways between grafted and host neurons can be achieved by monosynaptic tracing with viral vectors. The cutting-edge toolbox presented here holds immense promise for elucidating the impact of cell therapy on neural circuitry and guiding the development of more effective treatments for neurological disorders.

9.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731834

ABSTRACT

Tripartite motif (TRIM) proteins are a multifunctional E3 ubiquitin ligase family that participates in various cellular processes. Recent studies have shown that TRIM proteins play important roles in regulating host-virus interactions through specific pathways, but their involvement in response to rabies virus (RABV) infection remains poorly understood. Here, we identified that several TRIM proteins are upregulated in mouse neuroblastoma cells (NA) after infection with the rabies virus using RNA-seq sequencing. Among them, TRIM44 was found to regulate RABV replication. This is supported by the observations that downregulation of TRIM44 inhibits RABV replication, while overexpression of TRIM44 promotes RABV replication. Mechanistically, TRIM44-induced RABV replication is brought about by activating autophagy, as inhibition of autophagy with 3-MA attenuates TRIM44-induced RABV replication. Additionally, we found that inhibition of autophagy with rapamycin reverses the TRIM44-knockdown-induced decrease in LC3B expression and autophagosome formation as well as RABV replication. The results suggest that TRIM44 promotes RABV replication by an autophagy-dependent mechanism. Our work identifies TRIM44 as a key host factor for RABV replication, and targeting TRIM44 expression may represent an effective therapeutic strategy.


Subject(s)
Autophagy , Rabies virus , Tripartite Motif Proteins , Virus Replication , Autophagy/genetics , Animals , Mice , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Rabies virus/physiology , Rabies virus/genetics , Cell Line, Tumor , Humans , Rabies/virology , Rabies/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Host-Pathogen Interactions
10.
Methods Mol Biol ; 2786: 51-87, 2024.
Article in English | MEDLINE | ID: mdl-38814390

ABSTRACT

Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.


Subject(s)
Genetic Vectors , Newcastle disease virus , mRNA Vaccines , Animals , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Genetic Vectors/genetics , Newcastle disease virus/genetics , Newcastle disease virus/immunology , RNA Viruses/genetics , RNA Viruses/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics , mRNA Vaccines/genetics , mRNA Vaccines/immunology
11.
Viruses ; 16(5)2024 04 28.
Article in English | MEDLINE | ID: mdl-38793581

ABSTRACT

Rabies is a fatal encephalitic infectious disease caused by the rabies virus (RABV). RABV is highly neurotropic and replicates in neuronal cell lines in vitro. The RABV fixed strain, HEP-Flury, was produced via passaging in primary chicken embryonic fibroblast cells. HEP-Flury showed rapid adaptation when propagated in mouse neuroblastoma (MNA) cells. In this study, we compared the growth of our previously constructed recombinant HEP (rHEP) strain-based on the sequence of the HEP (HEP-Flury) strain-with that of the original HEP strain. The original HEP strain exhibited higher titer than rHEP and a single substitution at position 80 in the matrix (M) protein M(D80N) after incubation in MNA cells, which was absent in rHEP. In vivo, intracerebral inoculation of the rHEP-M(D80N) strain with this substitution resulted in enhanced viral growth in the mouse brain and a significant loss of body weight in the adult mice. The number of viral antigen-positive cells in the brains of adult mice inoculated with the rHEP-M(D80N) strain was significantly higher than that with the rHEP strain at 5 days post-inoculation. Our findings demonstrate that a single amino acid substitution in the M protein M(D80N) is associated with neurovirulence in mice owing to adaptation to mouse neuronal cells.


Subject(s)
Amino Acid Substitution , Brain , Rabies virus , Rabies , Viral Matrix Proteins , Animals , Rabies virus/genetics , Rabies virus/pathogenicity , Mice , Virulence , Brain/virology , Brain/pathology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Rabies/virology , Neurons/virology , Neurons/pathology , Virus Replication , Cell Line
12.
Autophagy ; : 1-18, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38566321

ABSTRACT

Lyssaviruses are well-known worldwide and often cause fatal encephalitis. Previous studies have shown that autophagy is beneficial for the replication of rabies virus (RABV), the representative lyssavirus, but the detailed mechanism remains obscure. In this study, we showed that the rabies virus matrix protein (RABV-M) used its PPxY motif to interact with the E3 ubiquitin-protein ligase NEDD4. NEDD4 then recruited MAP1LC3/LC3 via its LC3-interacting region (LIR). Interestingly, after binding to the ubiquitinated RABV-M, NEDD4 could bind more LC3 and enhance autophagosome accumulation, while NEDD4 knockdown significantly reduced M-induced autophagosome accumulation. Further study revealed that RABV-M prevented autophagosome-lysosome fusion and facilitated viral budding. Inhibition of RABV-M-induced autophagosome accumulation reduced the production of extracellular virus-like particles. We also found that M proteins of most lyssaviruses share the same mechanism to accumulate autophagosome by hijacking NEDD4. Collectively, this study revealed a novel strategy for lyssaviruses to achieve efficient viral replication by exploiting the host autophagy system.Abbreviations: ABLV: Australian bat lyssavirus; ATG5: autophagy related 5; Baf A1:bafilomycin A1;co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EBLV:European bat lyssavirus; GFP: green fluorescent protein; GST:glutathione S-transferase; hpi: hours post-infection; hpt: hourspost-transfection; LIR: LC3-interactingregion;MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry:red fluorescent protein; MOI: multiplicity of infection; NC: negativecontrol; MVB: multivesicular body; NEDD4: neural precursorcell-expressed developmentally down-regulated 4; RABV: rabies virus;SQSTM1/p62: sequestosome 1; VLP: virus-like particle; VPS4B: vacuolarprotein sorting 4B; TEM: transmission electron microscopy; WB:western blotting; WT: wild-type; µm: micrometer; µM: micromole.

13.
J Vet Diagn Invest ; : 10406387241246712, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653733

ABSTRACT

Rabies virus (RABV; Lyssavirus rabies) is a neurotropic virus that can be transmitted to mammals by the hematophagous bat Desmodus rotundus. An accurate, accessible method for the detection of RABV in cattle is necessary in Paraguay; thus, we evaluated the detection of RABV using 4 techniques: fluorescent antibody test (FAT), immunochromatography rapid detection test (RDT; Anigen Rapid Rabies Ag test kit; Bionote), a reverse-transcription PCR (RT-PCR) assay, and histologic lesions in different portions of the CNS of 49 Paraguayan cattle to determine the most sensitive and specific technique. By FAT and RDT, 15 of 49 (31%) samples were positive. By RT-PCR amplification of N and G genes, 13 of 49 (27%) and 12 of 49 (25%) were positive, respectively. RDT had high agreement with FAT (kappa = 1); sensitivity was 100% (95% CI: 97-100%) and specificity was 100% (95% CI: 99-100%). The amplification of the N and G genes resulted in substantial agreement (kappa of 0.9 and 0.8, respectively) compared with FAT, and the sensitivity and specificity of the N gene were 87% (95% CI: 66-100%) and 100% (95% CI: 98-100%), respectively, and those of the G gene were 80% (95% CI: 56-100%) and 100% (95% CI: 98-100%), respectively. Histologic lesions observed were lymphoplasmacytic meningoencephalitis, gliosis, and neuronophagia. The agreement observed between the FAT and RDT tests suggests that RDT is an accurate tool for the detection of RABV. Histopathology can be used to confirm lesions caused by RABV and to rule out other conditions; the RT-PCR assay is useful for molecular epidemiology studies.

14.
J Wildl Dis ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38685759

ABSTRACT

Wildlife translocation and cross-species transmission can impede control and elimination of emerging zoonotic diseases. Tracking the geographic origin of both host and virus (i.e., translocation versus local infection) may help determine the most effective response when high-risk cases of emerging pathogens are identified in wildlife. In May 2022, a coyote (Canis latrans) infected with the raccoon (Procyon lotor) rabies virus variant (RRV) was collected in Lewis County, West Virginia, US, an area free from RRV. We applied host population genomics and RRV phylogenetic analyses to determine the most likely geographic origin of the rabid coyote. Coyote genomic analyses included animals from multiple eastern states bordering West Virginia, with the probable origin of the rabid coyote being the county of collection. The RRV phylogenetic analyses included cases detected from West Virginia and neighboring states, with most similar RRV sequences collected in a county 80 km to the northeast, within the oral rabies vaccination zone. The combined results suggest that the coyote was infected in an RRV management area and carried the RRV to Lewis County, a pattern consistent with coyote local movement ecology. Distant cross-species transmission and subsequent host movement presents a low risk for onward transmission in raccoon populations. This information helped with emergency response decision-making, thereby saving time and resources.

15.
Vaccines (Basel) ; 12(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38543927

ABSTRACT

Rabies, a viral disease spread by infected animal bites that causes encephalitis in humans and other mammals, is a neglected infectious disease present on all continents except Antarctica. Spain has been free of terrestrial rabies since 1978. However, due to its geographical situation, it represents a bridge for imported cases from an endemic continent such as Africa to Europe. Rabies vaccination in dogs is an essential preventive tool against this zoonosis. The aim of this study was to determine the state of the immune response against rabies virus in dogs in Spain and to demonstrate whether several factors that have been previously related to the influence of the seroprevalence of this species are involved here. The seroconversion level of this zoonotic virus was assessed in a total of 1060 animals. Indirect ELISA was used to obtain data for statistical analysis to evaluate the studied variables. Working under the concept of One Health, this study provides relevant information to be taken into consideration not only to prevent re-emergence in countries free of this disease but also for prevention and control in endemic countries.

16.
Biotechnol J ; 19(3): e2300552, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528347

ABSTRACT

Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.


Subject(s)
Histocompatibility Antigens Class I , Immunoglobulin G , Receptors, Fc , Humans , Antibodies, Monoclonal/metabolism , Histocompatibility Antigens Class I/genetics , Immunoglobulin G/biosynthesis , Immunoglobulin G/genetics , Polysaccharides , Receptors, Fc/genetics , Protein Engineering/methods , Plants/genetics , Plants/metabolism
17.
Vet J ; 304: 106096, 2024 04.
Article in English | MEDLINE | ID: mdl-38503385

ABSTRACT

Feline viral rhinotracheitis (FVR) is caused by the feline herpesvirus-1 (FHV-1), which commonly results in upper respiratory symptoms, and can result in death in the kittens and weak cats. Rabies is an infectious disease with zoonotic characteristics highly relevant to public health and also poses a serious threat to cats. Vaccines are the most effective method to control the spread of both FHV-1 and RABV and have the advantage that they produce long-term specific immune responses. In this study, we constructed a bivalent vaccine against FHV-1 and rabies virus (RABV) simultaneously. The vaccine was constructed by cloning FHV-1 gB into a RABV based vector, and the recombinant RABV (SRV9-FHV-gB) expressing the FHV-1 gB protein was rescued. The growth characteristics of SRV9-FHV-gB were analyzed on NA and BSR cells. To assess the immunogenicity of the vaccine, mice and cats were immunized with SRV9-FHV-gB supplemented with Gel02 adjuvant. The SRV9-FHV-gB exhibited the same growth characteristics as the parent virus SRV9 in both BSR cells and NA cells. The safety of SRV9-FHV-gB was evaluated using 5-day-old and 14-day-old suckling mice. The results showed that mice infected with the SRV9-FHV-gB survived for longer than those in the SRV9 group. Mice immunized with inactivated SRV9-FHV-gB produced high titers of specific antibodies against FHV-1 and neutralizing antibodies against RABV. Cats that received three immunizations with SRV9-FHV-gB also produced neutralizing antibodies against both FHV-1 and RABV. This study represents the first time that a bivalent vaccine targeting FHV-1 and RABV has been constructed, laying the foundations and providing inspiration for the development of other multivalent vaccines.


Subject(s)
Cat Diseases , Rabies Vaccines , Rabies virus , Rabies , Rodent Diseases , Varicellovirus , Cats , Animals , Female , Mice , Rabies/prevention & control , Rabies/veterinary , Rabies virus/genetics , Vaccines, Combined , Vaccines, Synthetic , Antibodies, Neutralizing , Antibodies, Viral , Cat Diseases/prevention & control
18.
Microbes Infect ; 26(4): 105321, 2024.
Article in English | MEDLINE | ID: mdl-38461968

ABSTRACT

Rabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year globally. RABV infection is characterized by the suppression of the interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) that initiates IFN signaling currently remain elusive. Here, we showed that RABV RNAs are primarily recognized by the RIG-I RLR, resulting in an IFN response in the infected cells, but this response varied according to the type of RABV used. Pathogenic RABV strain RNAs, Tha, were poorly detected in the cytosol by RIG-I and therefore caused a weak antiviral response. However, we revealed a strong IFN activity triggered by the attenuated RABV vaccine strain RNAs, SAD, mediated by RIG-I. We characterized two major 5' copy-back defective interfering (5'cb DI) genomes generated during SAD replication. Furthermore, we identified an interaction between 5'cb DI genomes, and RIG-I correlated with a high stimulation of the type I IFN signaling. This study indicates that wild-type RABV RNAs poorly activate the RIG-I pathway, while the presence of 5'cb DIs in the live-attenuated vaccine strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection thus strongly stimulates the IFN response.


Subject(s)
DEAD Box Protein 58 , Rabies virus , Rabies virus/immunology , Rabies virus/genetics , Rabies virus/pathogenicity , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , Animals , Humans , Rabies/immunology , Rabies/virology , RNA, Viral/genetics , Receptors, Immunologic/metabolism , Rabies Vaccines/immunology , Cell Line , Signal Transduction , Mice , Virus Replication , Interferon Type I/metabolism , Interferon Type I/immunology
19.
Article in English | MEDLINE | ID: mdl-38449353

ABSTRACT

BACKGROUND: Dog-mediated rabies virus variant (DMRVV), a zoonotic pathogen that causes a deadly disease in animals and humans, is present in more than 100 countries worldwide but has been eliminated from the United States since 2007. In the United States, the U.S. Centers for Disease Control and Prevention has recorded four instances of rabies in dogs imported from DMRVV-enzootic countries since 2015. However, it remains uncertain whether the incidence of DMRVV among imported dogs from these countries significantly surpasses that of domestically acquired variants among domestic U.S. dogs. AIM: This evaluation aimed to estimate the number of dogs imported from DMRVV-enzootic countries and compare the risk of rabies between imported dogs and the U.S. domestic dog population. MATERIALS AND METHODS: Data from the CDC's dog import permit system (implemented during 2021 under a temporary suspension of dog importation from DMRVV-enzootic countries) and U.S. Customs and Border Protection's Automated Commercial Environment system, each of which records a segment of dogs entering the U.S. from DMRVV-enzootic countries, was analysed. Additionally, we estimated the incidence rate of rabies in dogs imported from DMRVV-enzootic countries and compared it to the incidence rate within the general U.S. dog population, due to domestically acquired rabies variants, over the eight-year period (2015-2022). RESULTS: An estimated 72,589 (range, 62,660-86,258) dogs were imported into the United States annually between 2015 and 2022 from DMRVV-enzootic countries. The estimated incidence rate of rabies was 16 times higher (range, 13.2-19.4) in dogs imported from DMRVV-enzootic countries than that estimated for domestically acquired rabies in the general U.S. dog population. CONCLUSIONS: Preventing human exposure to dogs with DMRVV is a public health priority. The higher risk of rabies in dogs imported from DMRVV-enzootic countries supports the need for importation requirements aimed at preventing the reintroduction of DMRVV into the United States.

20.
Travel Med Infect Dis ; 58: 102697, 2024.
Article in English | MEDLINE | ID: mdl-38369074

ABSTRACT

BACKGROUND: Rabies remains a deadly zoonotic disease, primarily prevalent in Eastern European countries, with a significant global burden in Asia and Africa. Post-exposure prophylaxis (PEP) is critical to prevent clinical rabies. Serbia, a country with a relatively low animal rabies incidence, has been implementing a 4-dose Essen PEP regimen for 13 years. This real-world study aimed to assess the effectiveness of the 4-dose Essen regimen, considering demographic and clinical factors, after WHO Category III exposure. METHOD: The study included 601 patients who received the 4-dose Essen PEP and 79 who received an additional 5th dose. RESULTS: Age emerged as a critical factor influencing seroconversion rates after the 4-dose regimen, with older individuals exhibiting lower RVNA titers. Logistic regression indicated a 3.18% decrease in seroconversion odds for each added year of age. The Cox proportional hazards mixed model highlighted age-related risks, with age groups 45-60 and 75-92 at the highest risk of non-seroconversion. Human Rabies Immune Globulin (HRIG) administration was associated with lower RVNA values after the 4-dose regimen, suggesting interference with vaccine immunogenicity among people who received larger doses of HRIG. CONCLUSIONS: This study provides valuable real-world evidence for rabies PEP in a non-homogeneous population with potential comorbidities. The results underscore the importance of optimizing PEP strategies, particularly in older individuals, and reconsidering HRIG dosing to improve seroconversion rates.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Animals , Humans , Aged , Rabies/epidemiology , Rabies/prevention & control , Post-Exposure Prophylaxis , Serbia/epidemiology , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...