Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(12): e2301164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229144

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) is a conserved serine/threonine kinase that integrates various environmental signals to regulate cell growth and metabolism. mTORC1 activation requires tethering to lysosomes by the Ragulator-Rag complex. However, the dynamic regulation of the interaction between Ragulator and Rag guanosine triphosphatase (GTPase) remains unclear. In this study, that LAMTOR1, an essential component of Ragulator, is dynamically ubiquitinated depending on amino acid abundance is reported. It is found that the E3 ligase TRAF4 directly interacts with LAMTOR1 and catalyzes the K63-linked polyubiquitination of LAMTOR1 at K151. Ubiquitination of LAMTOR1 by TRAF4 promoted its binding to Rag GTPases and enhanced mTORC1 activation, K151R knock-in or TRAF4 knock-out blocks amino acid-induced mTORC1 activation and accelerates the development of inflammation-induced colon cancer. This study revealed that TRAF4-mediated LAMTOR1 ubiquitination is a regulatory mechanism for mTORC1 activation and provides a therapeutic target for diseases involving mTORC1 dysregulation.


Subject(s)
Colorectal Neoplasms , Monomeric GTP-Binding Proteins , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , TNF Receptor-Associated Factor 4/metabolism , Ubiquitination , Amino Acids/metabolism
2.
Structure ; 31(9): 1065-1076.e5, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37453417

ABSTRACT

mTORC1 is a protein kinase complex that controls cellular growth in response to nutrient availability. Amino acid signals are transmitted toward mTORC1 via the Rag/Gtr GTPases and their upstream regulators. An important regulator is LAMTOR, which localizes Rag/Gtr on the lysosomal/vacuole membrane. In human cells, LAMTOR consists of five subunits, but in yeast, only three or four. Currently, it is not known how variation of the subunit stoichiometry may affect its structural organization and biochemical properties. Here, we report a 3.1 Å-resolution structural model of the Gtr-Lam complex in Schizosaccharomyces pombe. We found that SpGtr shares conserved architecture as HsRag, but the intersubunit communication that coordinates nucleotide loading on the two subunits differs. In contrast, SpLam contains distinctive structural features, but its GTP-specific GEF activity toward SpGtr is evolutionarily conserved. Our results revealed unique evolutionary paths of the protein components of the mTORC1 pathway.


Subject(s)
Monomeric GTP-Binding Proteins , Schizosaccharomyces , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Amino Acids/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Monomeric GTP-Binding Proteins/chemistry
3.
J Biol Chem ; 299(7): 104880, 2023 07.
Article in English | MEDLINE | ID: mdl-37269949

ABSTRACT

Cells need to coordinate nutrient availability with their growth and proliferation. In eukaryotic cells, this coordination is mediated by the mechanistic target of the rapamycin complex 1 (mTORC1) pathway. mTORC1 activation is regulated by two GTPase units, the Rag GTPase heterodimer and the Rheb GTPase. The RagA-RagC heterodimer controls the subcellular localization of mTORC1, and its nucleotide loading states are strictly controlled by upstream regulators including amino acid sensors. A critical negative regulator of the Rag GTPase heterodimer is GATOR1. In the absence of amino acids, GATOR1 stimulates GTP hydrolysis by the RagA subunit to turn off mTORC1 signaling. Despite the enzymatic specificity of GATOR1 to RagA, a recent cryo-EM structural model of the human GATOR1-Rag-Ragulator complex reveals an unexpected interface between Depdc5, a subunit of GATOR1, and RagC. Currently, there is no functional characterization of this interface, nor do we know its biological relevance. Here, combining structure-function analysis, enzymatic kinetic measurements, and cell-based signaling assays, we identified a critical electrostatic interaction between Depdc5 and RagC. This interaction is mediated by the positively charged Arg-1407 residue on Depdc5 and a patch of negatively charged residues on the lateral side of RagC. Abrogating this interaction impairs the GAP activity of GATOR1 and cellular response to amino acid withdrawal. Our results reveal how GATOR1 coordinates the nucleotide loading states of the Rag GTPase heterodimer, and thus precisely controls cellular behavior in the absence of amino acids.


Subject(s)
Amino Acids , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins , Humans , Amino Acids/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Nucleotides/metabolism , Signal Transduction/physiology , Static Electricity
4.
Microorganisms ; 11(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36677510

ABSTRACT

Target of rapamycin complex 1 (TORC1) is an important regulator of various signaling pathways. It can control cell growth and development by integrating multiple signals from amino acids, glucose, phosphate, growth factors, pressure, oxidation, and so on. In recent years, it has been reported that TORC1 is of great significance in regulating cytotoxicity, morphology, protein synthesis and degradation, nutrient absorption, and metabolism. In this review, we mainly discuss the upstream and downstream signaling pathways of TORC1 to reveal its role in fungi.

5.
Small GTPases ; 13(1): 327-334, 2022 01.
Article in English | MEDLINE | ID: mdl-36328771

ABSTRACT

The mechanistic target of rapamycin (mTOR) complex is responsible for coordinating nutrient availability with eukaryotic cell growth. Amino acid signals are transmitted towards mTOR via the Rag/Gtr heterodimers. Due to the obligatory heterodimeric architecture of the Rag/Gtr GTPases, investigating their biochemical properties has been challenging. Here, we describe an updated assay that allows us to probe the guanine nucleotide-binding affinity and kinetics to the Gtr heterodimers in Saccharomyces cerevisiae. We first identified the structural element that Gtr2p lacks to enable crosslinking. By using a sequence conservation-based mutation, we restored the crosslinking between Gtr2p and the bound nucleotides. Using this construct, we determined the nucleotide-binding affinities of the Gtr heterodimer, and found that it operates under a different form of intersubunit communication than human Rag GTPases. Our study defines the evolutionary divergence of the Gtr/Rag-mTOR axis of nutrient sensing.


Subject(s)
Monomeric GTP-Binding Proteins , Saccharomyces cerevisiae , Humans , Guanine/metabolism , Guanine Nucleotides/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Nucleotides/metabolism , Saccharomyces cerevisiae/metabolism , TOR Serine-Threonine Kinases/metabolism , GTP Phosphohydrolases/metabolism
6.
Methods Enzymol ; 675: 131-158, 2022.
Article in English | MEDLINE | ID: mdl-36220268

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient levels in the cell and based on the availability, regulates cellular growth and proliferation. Its activity is tightly modulated by two GTPase units, the Rag GTPases and the Rheb GTPase. The Rag GTPases are the central hub of amino acid sensing as they summarize the amino acid signals from upstream regulators and control the subcellular localization of mTORC1. Unique from canonical signaling GTPases, the Rag GTPases are obligatory heterodimers, and the two subunits coordinate their nucleotide loading states to regulate their functional states. Robust biochemical analysis is indispensable to understanding the molecular mechanism governing the GTPase cycle. This chapter discusses protocols for purifying and biochemically characterizing the Rag GTPase heterodimer. We described two purification protocols to recombinantly produce the Rag GTPase heterodimer in large quantities. We then described assays to quantitatively measure the nucleotide binding and hydrolysis by the Rag GTPases. These assays allow for a thorough investigation of this unique heterodimeric GTPase, and they could be applicable to investigations of other noncanonical GTPases.


Subject(s)
Monomeric GTP-Binding Proteins , Amino Acids/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/chemistry , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Nucleotides/metabolism , Ras Homolog Enriched in Brain Protein/metabolism
7.
Mol Cell ; 82(10): 1836-1849.e5, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35338845

ABSTRACT

mTORC1 controls cellular metabolic processes in response to nutrient availability. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which are localized on the lysosomal surface by the Ragulator complex. The Rag GTPases receive amino acid signals from multiple upstream regulators. One negative regulator, GATOR1, is a GTPase activating protein (GAP) for RagA. GATOR1 binds to the Rag GTPases via two modes: an inhibitory mode and a GAP mode. How these two binding interactions coordinate to process amino acid signals is unknown. Here, we resolved three cryo-EM structural models of the GATOR1-Rag-Ragulator complex, with the Rag-Ragulator subcomplex occupying the inhibitory site, the GAP site, and both binding sites simultaneously. When the Rag GTPases bind to GATOR1 at the GAP site, both Rag subunits contact GATOR1 to coordinate their nucleotide loading states. These results reveal a potential GAP mechanism of GATOR1 during the mTORC1 inactivation process.


Subject(s)
GTPase-Activating Proteins , Monomeric GTP-Binding Proteins , Amino Acids/metabolism , Cryoelectron Microscopy , GTPase-Activating Proteins/metabolism , Humans , Intracellular Membranes/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism
8.
Adv Exp Med Biol ; 1332: 51-66, 2021.
Article in English | MEDLINE | ID: mdl-34251638

ABSTRACT

Autophagy is a dynamic process in which the eukaryotic cells break down intracellular components by lysosomal degradation. Under the normal condition, the basal level of autophagy removes damaged organelles, misfolded proteins, or protein aggregates to keep cells in a homeostatic condition. Deprivation of nutrients (e.g., removal of amino acids) stimulates autophagy activity, promoting lysosomal degradation and the recycling of cellular components for cell survival. Importantly, insulin and amino acids are two main inhibitors of autophagy. They both activate the mTOR complex 1 (mTORC1) signaling pathway to inhibit the autophagy upstream of the uncoordinated-51 like kinase 1/2 (ULK1/2) complex that triggers autophagosome formation. In particular, insulin activates mTORC1 via the PI3K class I-AKT pathway; while amino acids activate mTORC1 either through the PI3K class III (hVps34) pathway or through a variety of amino acid sensors located in the cytosol or lysosomal membrane. These amino acid sensors control the translocation of mTORC1 from the cytosol to the lysosomal surface where mTORC1 is activated by Rheb GTPase, therefore regulating autophagy and the lysosomal protein degradation.


Subject(s)
Amino Acids , TOR Serine-Threonine Kinases , Autophagy , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Ras Homolog Enriched in Brain Protein , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
9.
Cell Rep ; 36(2): 109372, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260908

ABSTRACT

B lymphocytes are exquisitely sensitive to fluctuations in nutrient signaling by the Rag GTPases, and 15% of follicular lymphomas (FLs) harbor activating mutations in RRAGC. Hence, a potential therapeutic approach against malignant B cells is to inhibit Rag GTPase signaling, but because such inhibitors are still to be developed, efficacy and safety remain unknown. We generated knockin mice expressing a hypomorphic variant of RagC (Q119L); RagCQ119L/+ mice are viable and show attenuated nutrient signaling. B lymphocyte activation is cell-intrinsically impaired in RagCQ119L/+ mice, which also show significant suppression of genetically induced lymphomagenesis and autoimmunity. Surprisingly, no overt systemic trade-offs or phenotypic alterations caused by partial suppression of nutrient signaling are seen in other organs, and RagCQ119L/+ mice show normal longevity and normal age-dependent health decline. These results support the efficacy and safety of moderate inhibition of nutrient signaling against pathological B cells.


Subject(s)
B-Lymphocytes/immunology , Carcinogenesis/immunology , Carcinogenesis/pathology , Lymphoma/immunology , Lymphoma/pathology , Monomeric GTP-Binding Proteins/metabolism , Signal Transduction , Animals , Female , Gene Knock-In Techniques , Heterozygote , Immunity, Humoral , Longevity , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Mutant Strains , Mutation/genetics
10.
Autophagy ; 17(7): 1794-1795, 2021 07.
Article in English | MEDLINE | ID: mdl-34085593

ABSTRACT

Target of rapamycin complex 1 (TORC1) promotes cellular anabolism and suppresses macroautophagy/autophagy. In mammalian cells starved of amino acid, the GATOR1 complex, a negative regulator of TORC1, is released from its inhibitor GATOR2 and inactivates TORC1. We have recently identified the evolutionarily conserved GATOR2 components in fission yeast including Sea3, an ortholog of mammalian WDR59, but, unexpectedly, Sea3 acts as a part of GATOR1 to suppress TORC1. Moreover, fission yeast GATOR1 is not required for the amino-acid starvation-induced TORC1 attenuation, which is instead mediated by the Gcn2 pathway. Conversely, absence of a nitrogen source suppresses TORC1 in a manner dependent on GATOR1 as well as the Tsc1-Tsc2 complex, whose mammalian equivalent functions as a growth-factor sensitive TORC1 inhibitor. Thus, the evolutionarily conserved signaling modules are utilized differently between fission yeast and mammals to control TORC1 activity and autophagy.


Subject(s)
Autophagy , Schizosaccharomyces , Animals , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction
11.
J Biol Chem ; 297(1): 100861, 2021 07.
Article in English | MEDLINE | ID: mdl-34116056

ABSTRACT

Cellular growth and proliferation are primarily dictated by the mechanistic target of rapamycin complex 1 (mTORC1), which balances nutrient availability against the cell's anabolic needs. Central to the activity of mTORC1 is the RagA-RagC GTPase heterodimer, which under favorable conditions recruits the complex to the lysosomal surface to promote its activity. The RagA-RagC heterodimer has a unique architecture in that both subunits are active GTPases. To promote mTORC1 activity, the RagA subunit is loaded with GTP and the RagC subunit is loaded with GDP, while the opposite nucleotide-loading configuration inhibits this signaling pathway. Despite its unique molecular architecture, how the Rag GTPase heterodimer maintains the oppositely loaded nucleotide state remains elusive. Here, we applied structure-function analysis approach to the crystal structures of the Rag GTPase heterodimer and identified a key hydrogen bond that stabilizes the GDP-loaded state of the Rag GTPases. This hydrogen bond is mediated by the backbone carbonyl of Asn30 in the nucleotide-binding domain of RagA or Lys84 of RagC and the hydroxyl group on the side chain of Thr210 in the C-terminal roadblock domain of RagA or Ser266 of RagC, respectively. Eliminating this interdomain hydrogen bond abolishes the ability of the Rag GTPase to maintain its functional state, resulting in a distorted response to amino acid signals. Our results reveal that this long-distance interdomain interaction within the Rag GTPase is required for the maintenance and regulation of the mTORC1 nutrient-sensing pathway.


Subject(s)
Amino Acids/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Monomeric GTP-Binding Proteins/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/ultrastructure , Guanosine Triphosphate/chemistry , Humans , Hydrogen Bonding , Hydrolysis , Mechanistic Target of Rapamycin Complex 1/ultrastructure , Monomeric GTP-Binding Proteins/ultrastructure , Protein Conformation , Protein Domains/genetics , Protein Multimerization/genetics , Signal Transduction/genetics
12.
Elife ; 102021 02 03.
Article in English | MEDLINE | ID: mdl-33534698

ABSTRACT

Mammalian target of rapamycin complex 1 (TORC1) is controlled by the GATOR complex composed of the GATOR1 subcomplex and its inhibitor, the GATOR2 subcomplex, sensitive to amino acid starvation. Previously, we identified fission yeast GATOR1 that prevents deregulated activation of TORC1 (Chia et al., 2017). Here, we report identification and characterization of GATOR2 in fission yeast. Unexpectedly, the GATOR2 subunit Sea3, an ortholog of mammalian WDR59, is physically and functionally proximal to GATOR1, rather than GATOR2, attenuating TORC1 activity. The fission yeast GATOR complex is dispensable for TORC1 regulation in response to amino acid starvation, which instead activates the Gcn2 pathway to inhibit TORC1 and induce autophagy. On the other hand, nitrogen starvation suppresses TORC1 through the combined actions of the GATOR1-Sea3 complex, the Gcn2 pathway, and the TSC complex, another conserved TORC1 inhibitor. Thus, multiple, parallel signaling pathways implement negative regulation of TORC1 to ensure proper cellular starvation responses.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism
13.
Dev Cell ; 55(3): 272-288.e5, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32898476

ABSTRACT

The dysregulation of the metabolic regulator TOR complex I (TORC1) contributes to a wide array of human pathologies. Tuberous sclerosis complex (TSC) is a potent inhibitor of TORC1. Here, we demonstrate that the Rag GTPase acts in both the amino-acid-sensing and growth factor signaling pathways to control TORC1 activity through the regulation of TSC dynamics in HeLa cells and Drosophila. We find that TSC lysosomal-cytosolic exchange increases in response to both amino acid and growth factor restriction. Moreover, the rate of exchange mirrors TSC function, with depletions of the Rag GTPase blocking TSC lysosomal mobility and rescuing TORC1 activity. Finally, we show that the GATOR2 complex controls the phosphorylation of TSC2, which is essential for TSC exchange. Our data support the model that the amino acid and growth factor signaling pathways converge on the Rag GTPase to inhibit TORC1 activity through the regulation of TSC dynamics.


Subject(s)
Amino Acids/deficiency , Intercellular Signaling Peptides and Proteins/deficiency , Monomeric GTP-Binding Proteins/metabolism , Tuberous Sclerosis/metabolism , Animals , Drosophila , Female , Gene Knockdown Techniques , HeLa Cells , Humans , Lysosomes/metabolism , Mutation/genetics , Ovary/metabolism , Phosphorylation , Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
J Biol Chem ; 295(10): 2890-2899, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32019866

ABSTRACT

Nutrient sensing by cells is crucial, and when this sensing mechanism is disturbed, human disease can occur. mTOR complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Leucine, arginine, and methionine signal to mTORC1 through the well-characterized Rag GTPase signaling pathway. In contrast, glutamine activates mTORC1 through a Rag GTPase-independent mechanism that requires ADP-ribosylation factor 1 (Arf1). Here, using several biochemical and genetic approaches, we show that eight amino acids filter through the Rag GTPase pathway. Like glutamine, asparagine signals to mTORC1 through Arf1 in the absence of the Rag GTPases. Both the Rag-dependent and Rag-independent pathways required the lysosome and lysosomal function for mTORC1 activation. Our results show that mTORC1 is differentially regulated by amino acids through two distinct pathways.


Subject(s)
Asparagine/metabolism , Glutamine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , ADP-Ribosylation Factor 1/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Amino Acids/chemistry , Amino Acids/pharmacology , Animals , Asparagine/chemistry , Cell Cycle Proteins/metabolism , Cell Line , Culture Media/chemistry , Culture Media/pharmacology , Glutamine/chemistry , HEK293 Cells , Humans , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/chemistry , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Phosphorylation , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology
15.
J Biol Chem ; 294(8): 2970-2975, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30651352

ABSTRACT

mTOR complex 1 (mTORC1) is a major regulator of cell growth and proliferation that coordinates nutrient inputs with anabolic and catabolic processes. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which directly recruit mTORC1 onto the lysosomal surface, its site of activation. The Rag GTPase heterodimer has a unique architecture that consists of two GTPase subunits, RagA or RagB bound to RagC or RagD. Their nucleotide-loading states are strictly controlled by several lysosomal or cytosolic protein complexes that directly detect and transmit the amino acid signals. GATOR1 (GTPase-activating protein (GAP) activity toward Rags-1), a negative regulator of the cytosolic branch of the nutrient-sensing pathway, comprises three subunits, Depdc5 (DEP domain-containing protein 5), Nprl2 (NPR2-like GATOR1 complex subunit), and Nprl3 (NPR3-like GATOR1 complex subunit), and is a GAP for RagA. GATOR1 binds the Rag GTPases via two modes: an inhibitory mode that holds the Rag GTPase heterodimer and has previously been captured by structural determination, and a GAP mode that stimulates GTP hydrolysis by RagA but remains structurally elusive. Here, using site-directed mutagenesis, GTP hydrolysis assays, coimmunoprecipitation experiments, and structural analysis, we probed the GAP mode and found that a critical residue on Nprl2, Arg-78, is the arginine finger that carries out GATOR1's GAP function. Substitutions of this arginine residue rendered mTORC1 signaling insensitive to amino acid starvation and are found frequently in cancers such as glioblastoma. Our results reveal the biochemical bases of mTORC1 inactivation through the GATOR1 complex.


Subject(s)
Guanosine Triphosphate , Monomeric GTP-Binding Proteins , Repressor Proteins , Tumor Suppressor Proteins , Amino Acid Substitution , Arginine/chemistry , Arginine/genetics , Arginine/metabolism , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/genetics , Guanosine Triphosphate/metabolism , Humans , Hydrolysis , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Mutation, Missense , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
16.
Genes Cells ; 24(2): 151-161, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30570184

ABSTRACT

Small Ras-like GTPases act as molecular switches for various signal transduction pathways. RagA, RagB/RagC and RagD are small Ras-like GTPases that play regulatory roles in mTORC1. Lack of proper activation of mTORC1 can lead to diseases, such as cancer and diabetes. In this study, we found an interaction between RagA and WDR35. Mutations of WDR35 may cause genetic diseases including Sensenbrenner syndrome. WDR35 seems to be a hedgehog signaling protein with a possible ciliary function and a possible upstream regulator of RagA. RagB is a homologue of RagA and is also associated with WDR35. WDR35 is present in the endoplasmic reticulum, but usually not in lysosomes, where Rag family proteins act as an mTORC1 switch. Over-expression of WDR35 results in decreased phosphorylation of ribosome S6 protein in a RagA-, RagB- and RagC-dependent manner. Thus, WDR35 is associated with RagA, RagB and RagC and might negatively influence mTORC1 activity.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Proteins/metabolism , Cytoskeletal Proteins , HEK293 Cells , Hedgehog Proteins , Humans , Intracellular Signaling Peptides and Proteins , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Monomeric GTP-Binding Proteins/genetics , Multiprotein Complexes/genetics , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Proteins/genetics , Signal Transduction , Two-Hybrid System Techniques
17.
J Biol Chem ; 293(42): 16390-16401, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30194281

ABSTRACT

Glutamine is a key nutrient required for sustaining cell proliferation, contributing to nucleotide, protein, and lipid synthesis. The mTOR complex 1 (mTORC1) is a highly conserved protein complex that acts as a sensor of nutrients, relaying signals for the shift from catabolic to anabolic metabolism. Although glutamine plays an important role in mTORC1 activation, the mechanism is not clear. Here we describe a leucine- and Rag-independent mechanism of mTORC1 activation by glutamine that depends on phospholipase D and the production of phosphatidic acid, which is required for the stability and activity of mTORC1. The phospholipase D-dependent activation of mTORC1 by glutamine depended on the GTPases ADP ribosylation factor 1 (Arf1), RalA, and Rheb. Glutamine deprivation could be rescued by α-ketoglutarate, a downstream metabolite of glutamine. This mechanism represents a distinct nutrient input to mTORC1 that is independent of Rag GTPases and leucine.


Subject(s)
Glutamine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phospholipase D/metabolism , Cell Line , Humans , Mechanistic Target of Rapamycin Complex 1/chemistry , Nutrients/metabolism , Phosphatidic Acids/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , ral GTP-Binding Proteins/metabolism
18.
Autophagy ; 14(6): 1105-1106, 2018.
Article in English | MEDLINE | ID: mdl-29799770

ABSTRACT

Target of rapamycin complex 1 (TORC1) is an evolutionarily conserved protein kinase complex, whose activation in response to nutrients suppresses autophagy. In mammalian cells, amino-acid stimuli induce lysosomal translocation and activation of MTORC1 through the RRAG GTPase heterodimer, which is tethered to the surface of lysosomes by the Ragulator complex. Our recent study demonstrated that the fission yeast Schizosaccharomyces pombe also has a Ragulator complex that anchors the Gtr1-Gtr2 Rag GTPase heterodimer to the vacuole, a lysosome-like organelle. Unexpectedly, however, neither vacuolar localization nor activation of TORC1 is dependent on the Rag-Ragulator complex, which instead plays a critical role in attenuating TORC1 signaling. Our findings suggest dual functionality of the Rag GTPase in both activation and inactivation of TORC1.


Subject(s)
Autophagy , Monomeric GTP-Binding Proteins , Schizosaccharomyces , Animals , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction
19.
Proc Natl Acad Sci U S A ; 115(23): E5279-E5288, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29784813

ABSTRACT

A protein synthesis enzyme, leucyl-tRNA synthetase (LRS), serves as a leucine sensor for the mechanistic target of rapamycin complex 1 (mTORC1), which is a central effector for protein synthesis, metabolism, autophagy, and cell growth. However, its significance in mTORC1 signaling and cancer growth and its functional relationship with other suggested leucine signal mediators are not well-understood. Here we show the kinetics of the Rag GTPase cycle during leucine signaling and that LRS serves as an initiating "ON" switch via GTP hydrolysis of RagD that drives the entire Rag GTPase cycle, whereas Sestrin2 functions as an "OFF" switch by controlling GTP hydrolysis of RagB in the Rag GTPase-mTORC1 axis. The LRS-RagD axis showed a positive correlation with mTORC1 activity in cancer tissues and cells. The GTP-GDP cycle of the RagD-RagB pair, rather than the RagC-RagA pair, is critical for leucine-induced mTORC1 activation. The active RagD-RagB pair can overcome the absence of the RagC-RagA pair, but the opposite is not the case. This work suggests that the GTPase cycle of RagD-RagB coordinated by LRS and Sestrin2 is critical for controlling mTORC1 activation, and thus will extend the current understanding of the amino acid-sensing mechanism.


Subject(s)
Leucine-tRNA Ligase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Cell Line/metabolism , GTP Phosphohydrolases/metabolism , Humans , Leucine/metabolism , Lysosomes/metabolism , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Protein Binding , Protein Biosynthesis , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
20.
Cell Discov ; 3: 17049, 2017.
Article in English | MEDLINE | ID: mdl-29285400

ABSTRACT

The mechanistic target of rapamycin (mTOR) signal-transduction pathway plays a key role in regulating many aspects of metabolic processes. The central player of the mTOR signaling pathway, mTOR complex 1 (mTORC1), is recruited by the pentameric Ragulator complex and the heterodimeric Rag GTPase complex to the lysosomal membrane and thereafter activated. Here, we determined the crystal structure of the human Ragulator complex, which shows that Lamtor1 possesses a belt-like shape and wraps the other four subunits around. Extensive hydrophobic interactions occur between Lamtor1 and the Lamtor2-Lamtor3, Lamtor4-Lamtor5 roadblock domain protein pairs, while there is no substantial contact between Lamtor2-Lamtor3 and Lamtor4-Lamtor5 subcomplexes. Interestingly, an α-helix from Lamtor1 occupies each of the positions on Lamtor4 and Lamtor5 equivalent to the α3-helices of Lamtor2 and Lamtor3, thus stabilizing Lamtor4 and Lamtor5. Structural comparison between Ragulator and the yeast Ego1-Ego2-Ego3 ternary complex (Ego-TC) reveals that Ego-TC only corresponds to half of the Ragulator complex. Coupling with the fact that in the Ego-TC structure, Ego2 and Ego3 are lone roadblock domain proteins without another roadblock domain protein pairing with them, we suggest that additional components of the yeast Ego complex might exist.

SELECTION OF CITATIONS
SEARCH DETAIL